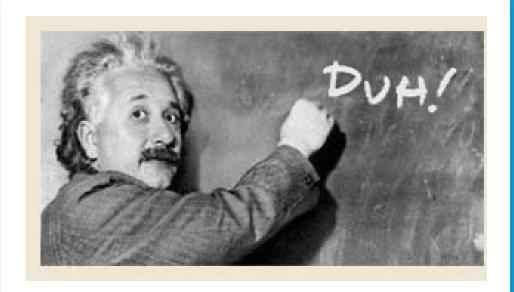
The modern way to treat a total knee patient: Slow and Steady

Prof. Stefano A. Bini M.D.

Maria Manetti Shrem Endowed Professor

Co-Founder PAS

Founder Digital Orthopedics Conference San Francisco



University of California San Francisco

Slow and Steady: it's (un) Common Sense

- We splint all other body parts when they are injured.
- We know swelling is the enemy of early function
- Surgery is massively traumatic
- Our sutures are only as good as the tissue they bring together
- Why would you move it early?

High Intensity vs. Low Intensity in patients with Knee OA: A randomized control trial

- HI vs LI. Isokinetic muscle strength as outcome.
- 12 weeks of Resistance Training: HI vs LI
- 177 Participants, 67.6 +/- 5.8 years
- No difference between groups
 - Strength
 - Pain
 - Physical function

Original Research Article

CLINICAL REHABILITATION

High-intensity versus low-intensity resistance training in patients with knee osteoarthritis: A randomized controlled trial

Clinical Rehabilitation
2022, Vol. 36(7) 952–967
© The Author(s) 2022
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/02692155211073039
journals.sagepub.com/home/cre

\$SAGE

Arjan H de Zwart¹, Joost Dekker^{2,3}, Leo D Roorda¹, Martin van der Esch^{1,4}, Paul Lips⁵, Natasja M van Schoor⁶, Annemiek C Heijboer^{7,8}, Franktien Turkstra⁹, Martijn Gerritsen⁹, Arja Häkkinen^{10,11}, Kim Bennell¹², Martjin PM Steultjens¹³, Willem F Lems^{9,14} and Marike van der Leeden^{1,2,3}

High Intensity vs. low intensity rehab post TKA

Osteoarthritis 🙃 Full Access

Early High-Intensity Versus Low-Intensity Rehabilitation After Total Knee Arthroplasty: A Randomized Controlled Trial

Michael J. Bade M. Tamara Struessel, Michael Dayton, Jared Foran, Raymond H. Kim, Todd Miner, Pamela Wolfe, Wendy M. Kohrt, Douglas Dennis, Jennifer E. Stevens-Lapsley

First published: 03 November 2016 | https://doi.org/10.1002/acr.23139 | Citations: 83

- 162 participants
- 2-3 visits/wk, 11 weeks
- HI included progressive resistance and faster WB
- No difference
 - TUG
 - 6MW, 10MW
 - WOMAC
 - SF-12
 - ROM
 - Muscle Strength

Intensive vs. Conventional Therapy post TKA

Comparing Intensive and Conventional Therapy: A Meta-Analysis of Postoperative Physical Outcomes After Total Knee Replacement

Mohamed Zahed ¹, Alzahraa Faris Alesawy ², Ziad Samir Zahed ³, Rahafat Samir ⁴, Mahmoud Eleisawy ⁴

1. Orthopedics, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, GBR 2. Clinical Microbiology and Immunology, Faculty of Medicine, Benha University, Benha, EGY 3. Ophthalmology, Faculty of Medicine, Benha University, Benha, EGY 4. Ophthalmology, Benha University Hospitals, Benha University, Benha, EGY

Study or Subgroup	Intensive Therapy			Conventional Therapy				Mean Difference	Mean Difference
	Mean	SD	Total	Mean	SD	Total	Weight	Weight IV, Random, 95% CI	IV, Random, 95% CI
1.7.1 till 1 month	*****							- 12 - 12 - 12 - 12 - 12 - 12 - 12 - 12	
Bade 2017 [22]	1.84	5.08	82	1.61	3.58	78	6.4%	0.23 [-1.13, 1.59]	
NAKAMURA 2020 [33]	0.6	4.3	24	-0.2	2.5	25	3.0%	0.80 [-1.18, 2.78]	
Subtotal (95% CI)			106			103	9.4%	0.41 [-0.71, 1.53]	
leterogeneity: Tau ² = 0.0	0: Chi2=	0.22, df	= 1 (P =	0.64); 2=	0%				
est for overall effect: Z=				200					
.7.2 3 month									
Bade 2017 [22]	-1.35	1.23	77	-1.01	1.23	77	78.0%	-0.34 [-0.73, 0.05]	-
hristiansen 2015 [23]	-1.9	3.39	13	-0.7	2.96	13	2.0%	-1.20 [-3.65, 1.25]	
lamilton 2020 [24]	-4.2	58.74	143	-1.83	111	143	0.0%	-2.37 [-22.95, 18.21]	•
Subtotal (95% CI)			233			233	80.0%	-0.36 [-0.75, 0.02]	•
leterogeneity: Tau2 = 0.0	0: Chi2=	0.50, df	= 2 (P =	0.78); 2=	: 0%				
est for overall effect: Z=	1.85 (P =	= 0.06)							
1.7.3 12 month									
Bade 2017 [22]	-1.64	3.41	71	-1.43	2.88	67	10.7%	-0.21 [-1.26, 0.84]	
ubtotal (95% CI)			71			67	10.7%	-0.21 [-1.26, 0.84]	
leterogeneity: Not applic	able								
est for overall effect: Z=		= 0.70)							
otal (95% CI)			410			403	100.0%	-0.27 [-0.62, 0.07]	•
Heterogeneity: Tau ² = 0.0	0: Chi2=	2.38, df	= 5 (P =	0.80); 2=	: 0%				
est for overall effect: Z=									-4 -2 0 2 4
est for subgroup differer			df = 20	P = 0.44	$I^2 = 0.96$				Favours [Intensive Therapy] Favours [Conventional Therapy]

FIGURE 8: Forest plot of time up and go.

- 2025 Meta Analysis
- 15 RCTs, 1087 patients
- 2006 to 2024
- Intensive Therapy at one month no difference in:
 - Walking distance
 - Quads
 - ROM
 - Pain
- Conclusion: ITT not justified

Rehabilitation

- Exercise Programs
 - In person (higher adherence)
 - Remote (lower adherence)
- Education
- Nutrition and Supplements
- First reports year 2000

Knee 🔯 Full Access

Telerehabilitation has similar clinical and patient-reported outcomes compared to traditional rehabilitation following total knee arthroplasty

First published: 26 March 2022 | https://doi.org/10.1007/s00167-022-06931-6 | Citations: 14

82 virtual vs. 244 conventional age matched controls No differences in

90 day encounters

MUA rates

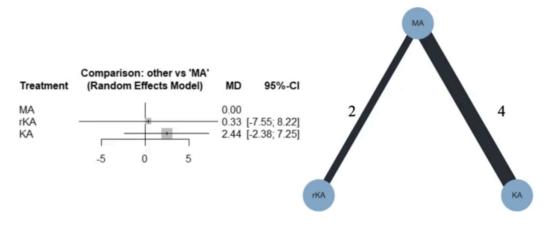
KOOS, Pain, VR-12

Conclusion Telerehab similar to in person rehab

Does how you do the knee matters: KA vs MA

Slight improvement in early period, no difference at one year.

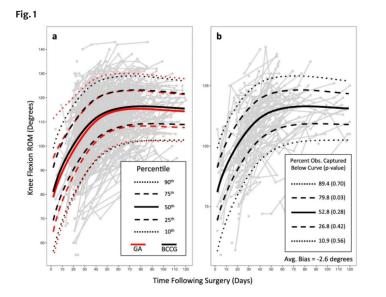
- Waterson et al. 2016 Design Prospective, blinded randomized trial (n = 71; KA n = 36, MA n = 35) with assessments at 6 weeks, 3 months, 6 months, and 1 year. ROM result No significant difference in range of movement at one year—mean difference 0.1° (95% CI –6.0 to 6.1, p = 0.99) [3].
- Matsumoto et al. 2017 Design Navigation-assisted series comparing 30 KA and 30 MA knees with one-year radiographic and clinical follow-up. ROM result Postoperative flexion angles and functional activity scores were reported significantly better in the KA group (p < 0.003 for flexion) at one year [4].
- Elbuluk et al. 2022 (matched cohort) Design 1:1 matched cohort (100 KA vs 100 MA) using the same implant and robotic guidance with outcomes at 6 weeks, 1 year, and 2 years. ROM result No difference in knee ROM at 6 weeks or 1 year (P > .43) [8].
- Dossett randomized cohort (long-term follow-up) Design Original randomized cohort (44 KA, 44 MA) with long-term follow-up (~13 years reported later); long-term PROMs and reoperation rates were comparable between methods (no consistent long-term ROM advantage reported in the follow-up summary) [7]. ----

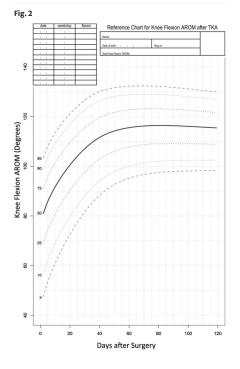

Home > BMC Musculoskeletal Disorders > Article

Postoperative clinical outcomes for kinematically, restricted kinematically, or mechanically aligned total knee arthroplasty: a systematic review and network meta-analysis of randomized controlled trials

Research | Open access | Published: 24 April 2023

Volume 24, article number 322, (2023) Cite this article


Fig. 3



Forest plot and network plot for postoperative ROM. ROM, range of motion; MA, mechanically aligned; KA, kinematically aligned; rKA, restricted kinematically aligned; MD, mean difference; CI, confidence interval

Variation in recovery

- 327 patients, University of Colorado
- Rapid increase in first 40 days
- Improvements to 80 days.
- This variability illustrates the limitations of a one-size-fits-all approach to postoperative rehabilitation, as both the content of therapy and resource requirements are likely to differ between individuals with fast versus slow recovery of flexion.

- Individual monitoring and goal setting
- Adaptive digital programs tailored to each patient's recovery profile
- App Based, human backed virtual programs
- Wearables to enable objective real time assessment and intervention

- S. Plavoukou, A. Sotiropoulos, S. Taraxidis, C. Stasinopoulos, and N. Georgoudis, "Sensor Technologies and Rehabilitation Strategies in Total Knee Arthroplasty: Current Landscape and Future Directions," Sensors (Basel), 2025,
- M. Karimijashni, S. Yoo, K. Barnes et al.,
 "Postoperative Rehabilitation Interventions in
 Patients at Risk of Poorer Outcomes Following
 Total Knee Arthroplasty: A Systematic
 Review," Musculoskeletal Care, 2025
- A. Gordon, A. M. Hussain, and M. A. Mont, "Utilization of smartphone technology and wearable technology following TKA," Journal of Knee Surgery, 2025
- A. J. Kittelson and K. Colborn, "Reference chart for knee flexion following total knee arthroplasty: a novel tool for monitoring postoperative recovery," BMC Musculoskeletal Disorders, 2020

Conclusion

- Baseline rehabilitation following total knee replacement should emphasize soft tissue healing in the first four weeks, followed by steady, pain-guided increase in activity
- Personalization of care may require ramping up or down the timeline based on patient history, physiology
- Real time, sensor based, patient monitoring can be integrated into care pathways to customize post op PT.

Thank you

Stefano Bini on Linked in

