

Metacarpal Base Fractures and Fracture-Dislocations:

Avoiding Complications

Michael J. Terry Associate Professor of Plastic Surgery Division of Plastic Surgery, Dept of Orthopedic Surgery University of California, San Francisco

19th Annual International San Francisco Orthopedic Trauma Course April 26, 2025

Carpometacarpal Joints: II-V

- Role is to form part of stable arch
- "Fixed unit" of the wrist
 - Longitudinal arch
 - Transverse arch

Ladd A. The Carpometacarpal Joints. Musculoskeletal Key

Carpometacarpal Joints: II-V

- Index/long CMCJ have less movement than ring/small
- 3rd CMCJ: 'keystone'
- 9 dorsal ligaments
- 11 volar ligaments

CMCJ fracture-dislocations

- Rare: <1% of hand trauma
- Mechanism:
 - axial loading (misplaced punch, high energy MVA)
 - Forced flexion of wrist with extended arm
- Little/ring finger more common

Management

- Closed Reduction
- Surgical Management
 - Open reduction
 - Fixation of fractures
 - Lag screw
 - Direct plate
 - Joint-spanning plate
 - Stabilization of joint
 - Temporary K-wire

CMCJ fracture-dislocations

• Often misdiagnosed

- Misdiagnosis leads to inadequate treatment
 - Malunion
 - Residual subluxation
 - Hand deformity
 - Pain
 - Arthritis
 - Long-term loss of grip strength/ROM

Index metacarpal base fractures/fracturedislocations

- Rare; few case reports
- Lack of motion should make joint congruency less important
- ECRL avulsion fractures: Conservative management often fails due to ECRL pull
- Most studies recommend open reduction with k wire
 Br J Sports Med stablization

Br J Sports Med 2001;35:133-135

Avulsion fracture of the extensor carpi radialis longus in a rugby player: a case report

Index, Long metacarpal base avulsion fractures

- Initially thought to result in little disability, closed tx was recommended
- However: Gunther et al: impossible to maintain reduction by closed methods
- Sadr and Lalehzarian: could not attach ECRL after 12 days; recommended early intervention

- Boles and Durbin; Sadr and Lalehzarian: noted decreased grip strength without anatomic tendon repair;
- Crichlow and Hoskinson: treated 3 ECRL avulsion closed: resulted in weak dorsiflexion, painful bony prominence requiring surgical removal
- Overall rec: ORIF of fxr and anatomic fixation of tendon
 - Improved grip/dorsiflexion strength
 - Avoid kwire related complications

Isolated index metacarpal base fracture-dislocations

© 2023 The Authors. Orthopaedic Surgery published by Tianjin Hospital and John Wiley & Sons Australia, Ltd.

CLINICAL ARTICLE

Clinical Outcomes of Closed Reduction and External Fixation for Isolated Second Metacarpal Base Fracture-Dislocations

Zhi-Yuan Yao, MD¹, Shu-Yao Fan, MD², Jie-Feng Huang, PhD¹ 🕑

Department of ¹Orthopedics and ²Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China

- 10 patients
- Treated with closed reduction and ex fix
- No difference to non-injured hand:
 - Grip strength, pinch strength, PIP, DIP flexion
- TAM scores lower
- QuickDASH scores higher
- 1 pt with asymptomatic posttraumatic arthritis

Long finger proximal metacarpal fractures

- Rare
- Usually result from forced hyperflexion of wrist w/clenched fist
- Most studies recommend surgical repair of intraarticular fractures, as this is site of ECRB
 - Plates
 - Lag screws

MILITARY MEDICINE, 171, 2:136, 2006

Avulsion of the Extensor Carpi Radialis Brevis Insertion: A Case Report and Review of the Literature

Guarantor: MAJ Anthony E. Johnson, MC USA *Contributors:* MAJ Anthony E. Johnson, MC USA*; MAJ Eric G. Puttler, MC USA†

AVULSION FRACTURE OF THE EXTENSOR CARPI RADIALIS BREVIS INSERTION

E. TSIRIDIS, J. KOHLS-GATZOULIS and C. SCHIZAS

From the Department of Orthopaedics, The Whittington Hospital, London, UK

Avulsion of the extensor carpi radialis brevis at wrist level is rare. We present a case of an avulsion fracture involving the extensor carpi radialis brevis insertion at the base of the middle finger metacarpal.

Journal of Hand Surgery (British and European Volume, 2001) 26B: 6: 596-598

- Case report of 32 M with avulsion fracture of base of long finger metacarpal, with ECRB avulsion from the fragment
- Treated with open reduction and internal fixation with tendon reattachment with suture anchor

Ulnar metacarpal base fracture-dislocations

- Isolated ring finger CMCJ fracture-dislocation
 - Essentially nonexistent
 - Occurs with 5th MC base fxr

- Surgical Options:
 - Closed reduction/casting
 - Closed reduction percutaneous pinning
 - Open reduction, internal fixation
 - Dorsal buttress or bridging of CMCJ

Outcomes

- 2020 analysis
 - 6 studies included
- 90 patients
 - 11% CRPP
 - 31% ORPP
 - 8.9% ORIF w CMCJ bridging
 - 16.7% ORIF w dorsal buttress plate
 - 31.1% closed reduction only

Surgery Article

Surgical Management of Ulnar Metacarpal Base Fracture-Dislocations: A Systematic Review

HAND 2022, Vol. 17(3) 405-411 © The Author(s) 2020 Article reuse guidelines: sagepub.com/journals-permissions DOI: 10.1177/1558944720948241 journals.sagepub.com/home/HAN

John B. Fuller^{1,2}, Andres S. Piscoya³, DesRaj M. Clark³, Kevin Markose⁴, and John C. Dunn¹

Table 2. Patient Treatment Methods.

Article	Surgical technique (implant material if mentioned)	Postop protocol	Average length of follow-up (months)
Kural et al ⁹	ORPP (9)	5-6 wks short arm splint	19.4 (range: 14-36)
Tan et al⁴	ORIF dorsal buttress (4)	Ulnar gutter splint AROM Ist week	NR
lwata et al ⁸	ORIF w/ titanium dorsal buttress hamate + CRPP 4th and 5th CMCJs (1)	5 wks removable splint 4 wks K-wires	6
Tay et al ¹⁰	ORIF dorsal buttress (11)	Ulnar gutter splint AROM 1st week	7.7 (range: 0.9-24.8)
Zhang et al ¹	CR acute (20) CR subacute (3) ORIF subacute (2) ORPP subacute (1)	Acute CR: 4 wks A + P splint Subacute CR: 4 wks A + P splint Subacute ORIF/ORPP: 2 wks splint, physiotherapy	26 (range: 15-44)
Gehrmann et al ¹¹	CR (5) CRPP (10) ORPP (18) ORIF (6)	5 wks K-wires Dorsal splint until union	Total cohort: 13 (range: 9-48) 5th CMCJs: 17.6 (range: 9-48) 4th and 5th CMCJs:12.3 (range: 9-21)
Totals and weighted averages	CR: 28 (31.1%) CRPP: 10 (11.1%) ORPP: 28 (31.1%) ORIF:8 (8.9%) ORIF dorsal buttress: 16 (17.8%)	4.2 wks splint	16.8 (range: 0.9-48)

Note. fx = fracture; dx = dislocation; fx-dx = fracture-dislocation; MC = metacarpal; CMC = carpometacarpal; CMCJ = carpometacarpal joint; ORIF = open reduction internal fixation; ORPP = open reduction percutaneous pinning; CR = closed reduction; CRPP = closed reduction percutaneous pinning; AROM = active range of motion; wks = weeks; NR = not recorded; A + P = anterior and posterior.

Outcomes

- Nonunion rate: 0% for all surgically managed patients
- Some studies showed decreased grip strength, but did not appear functionally significant

Table 3. Study Outcomes.

Article	Outcomes	Mean time to union (days)	Rate of union (X-ray) (%)	Postoperative instability?
Kural et al ⁹	ROM: NR Grip strength: 81.3% of CS Other: NR	NR	100	No
Tan et al⁴	ROM: 100% of CS Grip strength: NR Other: NR	NR	100	No
lwata et al ⁸	ROM: 87.5% WE, 77.8% WF vs CS Grip strength: 94.5% vs CS Other: QuickDASH 2.25	NR	100	No
Tay et al ¹⁰	ROM: 56°(50-80) WF, 65° (60-80) WE, Full ROM fingers Grip strength: 79% (range: 43%-100%) vs CS Other: NR	48 (range: 30-88)	100	No
Zhang et al ¹	Acute CR: ROM: normal vs CS ^a Grip strength: normal vs CS ^a Other: MHOQ @ yr 98 \pm 2. No degenerative arthritis Chronic CR: ROM: 80% vs CS in pt (33%) Grip strength: 60% of CS Other: MHOQ @ I yr 72 \pm 5; noticeable deformity; 2 pts w/pain in cold weather; 2 pts w/ degenerative arthritis Chronic-Surgical: ROM: normal vs CS ^a Grip strength: normal vs CS ^a Other: MHOQ @ I yr 96 \pm 5. No degenerative arthritis	NR	100	No
Gehrmann et al ¹¹	ROM: NR Grip strength: overall cohort: 84.1% vs CS 5th CMCJ: 82.5% vs CS (SD: 11.8, range: 0%-40%) ^a 4th and 5th CMCJ: 86.2% vs CS (SD: 10.3, range: 0%-36%) ^a Other: DASH score, overall cohort: 6.8 DASH score, 5th CMCJ: 7.2 (range: 0-17.5) ^a DASH score, 4th and 5th CMCJ: 6.0 (range: 0.8-17.5) ^a DASH score, CR: 10.4 (range: 3.3-17.5) DASH score, CRPP: 9.3 (range: 0.8-13.3)	NR	100	No

Complications

- Complication rate 14%
 - 33% for plate/screw constructs
 - Hardware-related symptoms all resolved after removal of hardware

Article	Minor complications	Major complications	
Kural et al ⁹	3—pain with heavy labor	0	
Tan et al⁴	0	I—HWR due to pain	
lwata et al ⁸	0	0	
Tay et al ¹⁰	2—temporary numbness	2—HWR after implant failure 3—HWR due to pain	
Zhang et al ¹	0	2—HWR	
Gehrmann et al ¹¹	0	0	
Totals and weighted averages	Total: 5 minor complications (5.6%)	Total reoperation: 8 (8.9%) HVVR: 8 (8.9%)	

Table 4. Complications.

Avoiding Complications: Zhang et al. 2015

- Closed reduction for patients presenting with <u>acute instability</u>
 - 20 patients with 4th/5th MC base fracture-dislocations
 - <3 days
 - MHQ: 98+/-2
 - Grip, ROM no sig difference from contralateral
 - Sensation, return to work, fine motor movements unchanged
 - No post traumatic arthritis

- Chronic instability
 - 6 patients
 - >2 weeks
 - Surgery (n=3):
 - MHQ: 96 +/-5
 - Grip, ROM: no sig difference from contralateral
 - Sensation, return to work, fine motor movements unchanged
 - No post traumatic arthritis
 - Closed Reduction (n=3):
 - MHQ: 72 +/-5
 - 40% grip str loss
 - 2 pts with post-traumatic arthritis

Avoiding Complications

• Conclusion:

- Need to avoid delay in diagnosis
- Chronic (>2 weeks) instability should be treated surgically
- Patients presenting acutely (<3 days) can do well with either closed reduction
 - Importance of early, timely diagnosis and treatment

Trans-CMCJ vs non-trans-CMCJ plate fixation

- 100 pts with 4th and/or 5th MC base fracture dislocations
- Randomized to
 - Transarticular fixation (n=50)
 - Non-transarticular fixation (n=50)

Journal of Orthopaedic Surgery and Research https://doi.org/10.1186/s13018-023-04225-2 Journal of Orthopaedic Surgery and Research 2023

RESEARCH ARTICLE

Open Access

A comparative study on the clinical efficacy of microplate trans-carpometacarpal joint fixation and non-trans-carpometacarpal joint fixation in treating fractures with dislocation or subluxation of the base of the fourth and fifth metacarpal bones

Liang Zhao^{1*}

Results

- No difference in fracture healing/healing time
- After 6 months
 - No difference in grip strength
 - Trans-articular fixation group had limited 4th/5th CMCJ ROM
 - All hardware was removed at 6 months from this group

Conclusion

- Both methods can achieve good fracture fixation and healing
- Transarticular fixation:
 - Ensures no re-dislocation
 - Can allow for joint arthrodiastasis
 - Must be removed in second operation to restore 4th/5th CMC function

Avoiding Complications: acute carpal tunnel

- 24 y/o M presents 1 day after punching wall
- Dysesthesias in median nerve distribution
- Swelling and pain at base of 2nd and 3rd metacarpals
- Xray and CT showed volar migration of index MC base fracture fragment

EMconsulte www.em-consulte.com

CLINICAL CASE

Volar fracture dislocation of the 2nd metacarpal base associated with acute carpal tunnel syndrome: A case report

Fracture luxation de la base du 2^e métacarpien associée à un syndrome du canal carpien aigu : un cas clinique

S. Piereschi^a, H. Remy^a, O. Camuzard^{a,b,*}

^a Institut Universitaire Locomoteur et du Sport (IULS), Service de Chirurgie Réparatrice et de la Main, CHU de Nice, Hôpital Pasteur 2, Nice, France

^b Laboratoire d'Anatomie humaine, Faculté de Médecine de Nice, Université Côte d'Azur, Nice, France

Received 22 June 2020; received in revised form 8 July 2020; accepted 16 July 2020

Avoiding complications: acute carpal tunnel

- Pt taken to OR for OCTR and ORPP
- Recovered and healed uneventfully

Avoiding Complications: acute carpal tunnel

- Metacarpal fractures resulting in ACTS are rare
 - Weiland et al 1976: volar fxrdisloc of 2nd/3rd MC bases
 - Al-Qattan et al 2008: ACTS associated with multiple metacarpal fractures and severe hand swelling

- Conclusion:
 - Have high index of suspicion in cases of trauma presenting with sensory deficit with hyperesthesia in median nerve distribution

Avoiding Complications: ulnar nerve injury

- Risk of iatrogenic ulnar motor nerve injury with dorsal fixation of 4th and 5th CMCJ fxr-disloc and coronal hamate body fractures
 - Due to quick advancements of drill bits or sharp k wires that penetrate the volar cortex

Avoiding Complications: ulnar nerve injury

- Janssen et al, 2024
- Anatomic study
 - 10 cadaver hands
 - Hamate divided into quadrants
 - Screws placed in 4 quadrants, as well as 5th metacarpal base, with 5mm overshoot
 - Distance to ulnar motor nerve structures were measured

SCIENTIFIC ARTICLE

Dorsal Fixation of Coronal Hamate and

Fifth Metacarpal Base Fractures: An

Anatomic Evaluation of the Ulnar Nerve

Pierce L. Janssen, MD,*† Christopher P. Bellaire, BA,*† Dani C. Inglesby, MD,*† Dylan M. Taub, Peter J. Taub, MD, MS,* Eitan Melamed, MD*†

Avoiding Complications: ulnar nerve injury

- 6/10 5th metacarpal screw tips abutted the ulnar motor nerve, and were within 1mm in other specimens
- Hamate screw tips relatively distant; closest was prox-ulnar
- Conclusion:
 - Use extreme care with direct dorsal-to-volar pin or screw fixation of base of 5th metacarpal
 - Reduce risk with oblique angle: entry on ulnar, midaxial side and aimed at hamate body

Thank you!

- Michael J. Terry MD
- Michael.terry@ucsf.edu

- Sadr B, Lalehzarian M: Traumatic avulsion of the tendon of extensor carpi radialis longus. J Hand Surg [Am] 1987; 12: 1035–7. 4.
- Treble N, Arif A: Avulsion fracture of the index metacarpal. J Hand Surg [Br] 1987; 12: 38 –9. 5.
- Crichlow TPKR, Hoskinson J: Avulsion fracture of the index metacarpal base: three case reports. J Hand Surg [Br] 1988; 13: 212–4. 6.
- Voight C: Osseous rupture of the attachment of the tendon of the extensor carpi radialis brevis muscle. Handchir Mikrochir Plast Chir 1989; 21: 331–3. 7.
- Rotman MB, Pruitt DL: Avulsion fracture of the extensor carpi radialis brevis insertion. J Hand Surg [Am] 1993; 18: 511–3. 8.
- Cobbs KF, Owens WS, Berg EE: Extensor carpi radialis brevis avulsion fracture of the long finger metacarpal: a case report. J Hand Surg [Am] 1996; 21: 684 –6. 9.
- Jessa KK, Hodge JC: Avulsion fracture of tendon of extensor carpi radialis longus: unknown mechanism. J Emerg Med 1997; 15: 201– 7. 10.
- Boles SD, Durbin RA: Simultaneous ipsilateral avulsion of the extensor carpiradialis longus and brevis tendon insertions: case report and review of the literature. J Hand Surg [Am] 1999; 24: 845– 9.

- Hocker K, Spitz H: Osseous avulsion injury of the extensor carpi radialis brevis tendon from the base of the 3rd metacarpal bone [in German]. Handchir Mikrochir Plast Chir 2000; 32: 112–4. 12.
- Tsiridis E, Kohls-Gatzoulis J, Schizas C: Avulsion fracture of the extensor carpi radialis brevis insertion. J Hand Surg [Br] 2001; 26: 596 –8.

