

Humeral Diaphyseal Fractures: Which Ones to Fix and Selecting the Right Approach

Prism Schneider MD, PhD, FRCSC Division of Orthopaedic Trauma Professor, Departments of Surgery and Community Health Sciences University of Calgary

19th Annual International San Francisco Orthopaedic Trauma Course April 24 - 26, 2025

Objectives

- To review the current evidence
- To identify **patients** at risk for nonunion
- To identify **fracture patterns** at risk for nonunion
- To recognize the importance of early intervention
- To review surgical approach and tips and tricks

45 year old female

BMI = 30.5

Right hand dominant

Nonsmoker

• Fractures of the humeral diaphysis occur in a

Current Evidence

- Fractures of the humeral diaphysis occur in a bimodal distribution and represent 3 to 5% of all fractures
- Humeral diaphyseal fractures were historically treated nonoperatively using splints, braces, slings
 - Nonunion rates reported up to 33%
- Many studies are limited by retrospective study designs, lack of PROMs, poor follow-up, non-randomization, small sample sizes

- Study Design: Multicentre randomized controlled trial across 12 participating sites
- Inclusion Criteria
 - 18 years or older with skeletal maturity
 - Displaced humeral diaphyseal fracture (AO/OTA 12-A, B, C)
 - Fracture amenable to both treatments
 - Within 21 days from injury
 - No additional injuries to the extremity

ORTHOPAEDIC

Current Evidence – COTS Trial

• **Study Design:** Multicentre randomized controlled trial across 12 participating sites

Inclusion Criteria

- 18 years or older with skeletal maturity
- Displaced humeral diaphyseal fracture (AO/OTA 12-A, B, C)
- Fracture amenable to both treatments
- Within 21 days from injury
- No additional injuries to the extremity

Current Evidence – COTS Trial

• Exclusion Criteria:

- Open fracture
- Neurovascular injury requiring repair
- Active infection at the surgical approach site
- Prior injury, degenerative conditions, or congenital conditions to the affected extremity
- Polytrauma with other extremity fractures
- Metabolic bone disorder that may impair healing
- Pathologic fracture
- Unable to attend follow-up

- Primary Outcome: Disability Shoulder, Arm, Hand (DASH) score
 - Constant Shoulder Score
 - Short Musculoskeletal Functional Assessment (SMFA)

• Secondary Outcomes:

- Clinical
 - Range of motion
 - Complications

• Radiographic

- Time-to-union
- Angulation

	Baseline	2 weeks	6 weeks	4 months	6 months	12 months
DASH / SMFA	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Constant Score			\checkmark	\checkmark	\checkmark	\checkmark
Clinical evaluation		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Radiographic evaluation	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

COTS

- Randomization: Block permuted, variable block sizes, stratified by site
- ORIF
 - 3.5mm or 4.5mm plate
 - Splinting or sling for 7-10 days
 - Standardized physiotherapy included ROM at 10-14 days, then strengthening by 6-8 weeks as tolerated

- COTS
- Randomization: Block permuted, variable block sizes, stratified by site
- Non-operative
 - Sugartong splint for 10-14 days
 - Functional brace until evidence of healing
 - Standardized physiotherapy included ROM at 2 weeks after functional brace applied, with strength measured beginning at 6 weeks

	ORIF (N=84)	Non-operative (N=84)	p-value
Sex			
Female	33 (39.3%)	32 (38.1%)	0.87
Male	51 (60.7%)	52 (61.9%)	
Age, years			
Mean (SD)	41.7 (17.2)	45.4 (16.5)	0.16
Median [Min, Max]	38.5 [18.0 <i>,</i> 77.0]	47.0 [18.0, 86.0]	
Smoker			
Former smoker	17 (20.2%)	19 (22.6%)	0.74
Non-smoker	49 (58.3%)	50 (59.5%)	
Smoker	18 (21.4%)	14 (1.2%)	
BMI			
Mean (SD)	27.2 (6.2)	27.8 (8.7)	0.64
Median [Min, Max]	26.0 [14.5, 52.4]	26.6 [2.61, 61.7]	
Missing	3 (3.6%)	2 (2.4%)	
Previous Conditions			
0	33 (39.3%)	34 (40.5%)	0.08
1	51 (60.7%)	50 (59.5%)	
AO-OTA Classification			
12-A	60 (71.4%)	70 (85.4%)	
12-B	23 (27.4%)	10 (12.2%)	0.93
12-C	1 (1.2%)	2 (2.4%)	

Results – Constant Shoulder Score

- For isolated, closed humeral diaphyseal fractures:
- ORIF:
 - Low incidence of iatrogenic nerve injury (1.2%), or infection requiring surgery (1.2%)
 - Early shoulder strength, ROM, radiographic alignment will be improved
 - Strength and ROM will be limited for 4 months

- For isolated, closed humeral diaphyseal fractures:
- ORIF:
 - Low incidence of iatrogenic nerve injury (1.2%), or infection requiring surgery (1.2%)
 - Early shoulder strength, ROM, radiographic alignment will be improved
- Non-operative:
 - Fracture union may take 4-6 months
 - 13.1% chance of non-union, requiring surgery
 - Strength and ROM will be limited for 4 months

ORIF provides earlier functional recovery and more rapid fracture healing

Rämö, L. et al., JAMA Surgery, 2020; Cannada et al., J. Surg. Orthop. Adv. 2021; Ring et al., J Trauma. 2007; Ekholm et al., J Orthop Trauma. 2006; van de Wall et al., J Shoulder Elbow Surg. 2020.

• Reported risk factors for non-union have included:

- Current smoking status
- Increased age
- Elevated BMI
- Unstable fracture patterns
- Non-operative treatment

Risk Factors for Nonunion

Sex (female)	3.23	0.74 – 17.24	0.132
Body Mass Index (BMI)	1.16	1.04 – 1.33	0.014
Smoker [Former Smoker]	0.66	0.66 - 4.62	0.698
Smoker [Non-smoker]	1.41	0.18 – 7.91	0.707

95% Confidence Interval

0.96 - 1.05

p-value

0.861

Logistic regression model for non-operative group:

Odds Ratio

1

- 11 in the non-operative group (13.1%)
 - 2 in the ORIF group (2.4%)
- 13 nonunions

Predictor

Age

Patients at Risk for Nonunion

- 8.6% nonunions in former smokers
- 9.4% nonunions in current smokers
- 7.0% nonunions in nonsmokers

Fractures at Risk for Nonunion

- 13 nonunions
 - 11 in the non-operative group (13.1%)
 - 2 in the ORIF group (2.4%)
- All non-unions occurred in simple AO/OTA A-type fractures:
 - A1 = 38.5%
 - A2 = 23.1%
 - A3 = 38.5%

Risk factors for nonunion: Elevated BMI Simple fracture patterns

Fractures at Risk for Nonunion

- All 11 patients with non-unions in the nonoperative group underwent surgical intervention
 - ORIF without bone graft (n = 7)
 - ORIF with iliac crest bone graft (n = 5)
- Average time to surgical intervention
 - 18.3 (± 10.5) weeks

Poor Function with Nonunion

DASH Score

 Significantly worse (higher) scores at all timepoints for those who were initially treated non-operatively and went on to non-union requiring surgical intervention

	Union in	Non-union in	
	Non-operative Group	Non-operative Group	p-value
2 weeks	66.7 (17.8)	80.3 (10.8)	0.004
6 weeks	53.2 (21.2)	70.7 (20.6)	0.038
4 months	27.2 (23.4)	54.1 (20.7)	0.002
6 months	16.5 (18.4)	42.3 (28.1)	0.036
12 months	8.2 (13.5)	31.4 (25.2)	0.036

Poor Function with Nonunion

Constant Shoulder Score

 Significantly worse (lower) scores at all timepoints for those who were initially treated non-operatively and went on to non-union requiring surgical intervention

	Union in	Non-union in	
	Non-operative Group	Non-operative Group	p-value
6 weeks	26.6 (15.5)	10.8 (6.7)	< 0.0001
4 months	60.2 (23.6)	31.7 (24.2)	0.005
6 months	74.8 (17.2)	43.6 (21.8)	0.002
12 months	83.6 (14.4)	67.1 (16.2)	0.036

Early Identification of Nonunion Risk

- COTS study non-union rate was low (13.1%)
 - FISH trial 25% non-union rate in non-operative group (30% required surgery)
- Risk factors for non-union with non-operative treatment
 - Elevated BMI
 - Simple fracture patterns
- Significantly worse PROMs at all timepoints when initially treated nonoperatively and went on to nonunion requiring surgery
 - Early identification of risk for non-union is important in guiding decision-making

45 year old female

BMI = 30.5

Right hand dominant

Nonsmoker

2-week Follow-up

45 year old female

BMI = 30.5

Right hand dominant

Nonsmoker

6-week Follow-up

45 year old female

BMI = 30.5

Right hand dominant

Nonsmoker

4-month Follow-up

45 year old female

BMI = 30.5

Right hand dominant

Nonsmoker

Surgical Approach

Surgical Approach

Caution with retractors in the distal 1/3 of the humerus to avoid iatrogenic radial nerve injury

Surgical Technique

- Single plate constructs are the traditional method for humeral diaphyseal fracture fixation
- Dual plate constructs may be advantageous
 - Less extensile dissection
 - Provisional fixation
 - Reduction aid
 - Increased screw density
 - Rotational control

Surgical Technique

- Single plate constructs are the traditional method for humeral diaphyseal fracture fixation
- Dual plate constructs may be advantageous
 - Less extensile dissection
 - Provisional fixation
 - Reduction aid
 - Increased screw density
 - Rotational control

Surgical Technique

- Single plate constructs are the traditional method for humeral diaphyseal fracture fixation
- Dual plate constructs may be advantageous
 - Less extensile dissection
 - Provisional fixation
 - Reduction aid
 - Increased screw density
 - Rotational control

- 1. Group A: 3.5mm LCP anterolateral plate (9 hole)
- 2. Group B: 3.5mm LCP anterior (8 hole), 2.7mm LCP lateral (8 hole)
- 3. Group C: 3.5mm LCP anterior (8 hole), 1/3 tubular lateral (5 hole)
- 4. Group D: 2.7mm LCP anterior (10 hole), 2.7mm LCP lateral (8 hole)

Results

Figure 1: Comparison of compressive, medial bending, and torsional stiffness between single and dual plate constructs.

**indicates statistically significant difference.*

- First study to examine biomechanical differences of single vs dual-plate constructs
- Data supports the hypothesis that dualplate constructs have higher stiffness
 - Axial loading, medial bending, torsional
- No significant difference between different dual-plate constructs

Objectives

- To review the current evidence
 - Earlier functional recovery with ORIF
- To identify **patients** at risk for nonunion
 - Elevated BMI
- To identify **fracture patterns** at risk for nonunion
 - Simple fracture patterns
- To recognize the importance of early intervention
 - Poor outcomes with delayed nonunion surgery
- To review surgical approach and tips and tricks
 - Anterolateral for most, posterior for more distal
 - Consider dual plating as an adjunction

Humeral Diaphyseal Fractures: Which Ones to Fix and Selecting the Right Approach

Prism Schneider MD, PhD, FRCSC Division of Orthopaedic Trauma Professor, Departments of Surgery and Community Health Sciences University of Calgary

19th Annual International San Francisco Orthopaedic Trauma Course April 24 - 26, 2025