Transscaphoid Perilunate Injuries: Assessment, Approach and Fixation

Scott L. Hansen, M.D., F.A.C.S.

Professor and Chief, Division of Plastic and Reconstructive Surgery Stephen J. Mathes Endowed Chair Chief, Hand and Microvascular Surgery University of California, San Francisco Director, UCSF Microsurgery Fellowship

Incidence

- Wrist injuries account for about 2.5% of all ED visits
- Of carpal injuries, about 5-7% are perilunate injuries
- Younger population good bone stock
- Approximately 25% are **MISSED**

Perilunate Injuries

- Perilunate fracture-dislocations (PLFD) and Perilunate dislocations (PLD)
 - 2 PLFDs: 1 PLDs
- 97% are dorsal, 3% palmar
- Dorsal trans-scaphoid perilunate dislocations comprise **61%** of all injuries

Lesser vs. Greater Arc injuries

Lesser Arc Injuries

• Purely ligamentous

Greater Arc Injuries

- Scaphoid**
- Capitate
- Lunate
- Triquetrum
- Radial styloid

Greater Arc

Palmar Ligaments

CRUCIAL for carpal stability: prevent translation, rotation and angulation.

Proximal: Radiolunotriquetral, ulnotriquetral, ulnoluntate
Distal: Radioscaphocapitate, ulnocapitate
Blood Supply: Lig. of Testut (RSL ligament)*
Space of Poirier: Area of weakness

Dorsal Ligaments

Mechanism of Injury

- High energy (work, MVA, sport)
- Wrist extension, ulnar deviation and supination at the midcarpal joint
 - Fall on outstretched hand
- Disturbance of ligaments

HAND	SURGERY
------	---------

Descriptive Epidemiology and Management of Perilunate Injuries

Alap U. Patel, MD,^a Jack Thiara,^b Zuivanna Rivas, BS,^c and Scott L. Hansen, MD^a

TABLE 2. Injury Characteristics		
Injured extremity		
Right	20 (61%)	
Left	13 (39%)	
Injury mechanism		
Fall from 0 to 10 feet	8 (24%)	
Fall from greater than 10 feet	8 (24%)	
Motor vehicle accident	8 (24%)	
Bicyclist struck by automobile	3 (10%)	
Assault	3 (10%)	
Pedestrian struck by automobile	2 (5%)	
Crush injury	1 (3%)	

ZSFG 2014-2023 N=33 cases

Hansen SL, et al, 2024

Perilunate Injury

Mayfield Classification

(Radial to Ulnar disruption)

- PLI 1 scaphoid fracture or S-L disruption
- PLI 2 lunocapitate dislocation
- PLI 3 L-T disruption
- PLI 4 lunate dislocation

Mayfield JK, Johnson RP, Kilcoyne RK. J Hand Surg Am. 1980

Stage I: Scapholunate Ligament Injury

Scapholunate dissociation

• Tearing of the scapholunate ligaments (dorsal, interosseous, and palmar).

Stage II: Lunocapitate Dislocation

AKA perilunate dislocation

- Scapholunate and lunocapitate ligament rupture.
- lunate remains aligned with the distal radius,- the surrounding carpal bones are displaced.
- Capitate and scaphoid remain together and dissociate from the lunate and triquetrum. The rupture in the carpal joint capsule creates a gap in the space of Poirier.

Stage III: Midcarpal Dislocation

 The lunotriquetral ligament is ruptured and/or a partial avulsion of the triquetral bone occurs. Lunate and capitate lose alignment with the distal radius.

Stage IV: Lunate Dislocation

Result of circumferential disruption of the Lunate:

• Lunate rotation and dislocation through the space of Poirier

- The lunate is dislocated and the dorsal radiolunate ligament is ruptured
 - Creates what is known as the spilled teacup sign.

Assessment: Presentation

- 10% are open, typically palmar laceration
 - Lunate extrusion
- Significant wrist swelling
- Fingers flexed, pain with passive ROM
- 24-45% with median nerve paresthesia's
- 26% associated with polytrauma

TABLE 1. Demographics	
Gender	
Male	32 (97%)
Female	1 (3%)
Age	
Average	33.9
SD	9.9
T. 141-1 (Hansen SL et a

Diagnosis

- Often missed (up to 25%)!
- High clinical suspicion
- Very impressive swelling
- X-ray

Diagnosis	
Trans-scaphoid perilunate dislocation	20 (61%)
Perilunate dislocation	8 (24%)
Perilunate fracture dislocation	3 (10%)
Perilunate dislocation + other nonscaphoid carpal bone injury	2 (5%)
Mayfield classification	
Ι	1 (3%)
Π	1 (3%)
III	18 (55%)
IV	13 (39%)
Symptoms of median nerve compression on initial exam	
Yes	16 (48%)
No	17 (52%)

Hansen SL, et al, 2024

X-Ray Findings

- Disruption of carpal arcs
- Overlapping of carpal bones
- Crowded or jumbled carpal bones
- Foreshortened carpus
- Lunate triangular
- Greater arc fractures

Initial imaging modality	
XR	19 (58%)
CT	2 (6%)
XR and CT	12 (36%)

Hansen SL, et al, 2024

Carpal Arcs- Gilula's Lines

Imaging: Lateral View

- Lunate and/or Distal Row not aligned with radius
- Abnormal Scapholunate/Radiolunate angles
- Spilled Teacup

*Loss of collinearity between capitate, lunate and distal radius

Physical Exam

- Moderate/Severe Swelling
 - Evaluate for acute CTS>>compartment syndrome of forearm/hand
 - Neuropraxia may be only exam finding
- Short and thick wrist
- Limited motion / crepitus
- Palmar or Dorsal prominence
- Median nerve symptoms
 - Lunate dislocated

Initial treatment

- Closed reduction with adequate sedation
 - In finger traps with 10-15 lbs. Traction for 5-10 minutes
 - Earlier = less swelling and easier
 - Takes pressure off median nerve (check 2PD)
- Maneuver
 - Wrist extension
 - Counterpressure -palmar over lunate
 - Gradual wrist flexion with direct pressure over capitate
- If the lunate is completely out of the fossa- closed reduction is unlikely and may damage vascularity (RSL ligament disrupted)

Budoff, JHS-Am- 2008

Operative or Non-Operative?

Operative!!!!

- Goals
 - Anatomic reduction of carpal bones
 - Ligament repair
 - Median nerve release
- When is operative intervention an emergency?
 - Progressive median nerve symptoms
 - Open fracture
 - Enucleated lunate

Consulting team	
Orthopedic surgery	18 (55%)
Plastic surgery	15 (45%)
Initial ED treatment	
Reduction successful with delayed OR	19 (60%)
Reduction successful with immediate OR	5 (15%)
Splinting only (no documented reduction)	4 (12%)
Reduction successful with no OR intervention	2 (5%)
Reduction unsuccessful with immediate OR	2 (5%)
Initial presentation to clinic/outpatient	1 (3%)
OR treatment	
Yes	30 (91%)
No	3 (9%)
Time to OR $(n = 30)$	
Within 24 hours	10 (33%)
>24 hours to 1 week	16 (53%)
>1 week to 6 months	4 (14%)
Specific OR intervention $(n = 30)$	
ORIF	17 (56%)
ORPP	9 (30%)
OR reduction only (no ORIF or CRPP)	2 (7%)
CRPP	2 (7%)
Needs for CTR	
Yes	17 (52%)
No	16 (48%)

Closed Reduction Percutaneous Pinning

- Most (all) injuries require fixation to maintain reduction
- +/- Arthroscopy
- Reduce and pin:
 - Lunate to radius
 - Capitate to lunate
 - Scaphoid to lunate
 - Lunate to triquetrum
 - Scaphoid to capitate
- Doesn't address ligament injuries
- Median nerve compression

Fixation: Open Reduction Internal Fixation

- ORIF Preferred
 - Direct view of injury
 - Ligamentous repair
 - Decompression of median nerve
- Several Approaches –No clear evidence supporting one vs. another
 - Dorsal
 - Volar
 - Combined Dorsal/Volar

Operative Management: Dorsal vs. Volar

Dorsal

- Direct view of proximal carpal row
- Antegrade fixation of scaphoid, capitate
- Repair dorsal **SLIL**

<u>Volar</u>

- Carpal tunnel release
- Repair of capsular tear
- Reduce lunate
- Repair LTIL ligament

Fracture Fixation

Begin with fracture fixation

- Scaphoid and Capitate fractures are typically fixed from dorsal approach
- Repair radial styloid fracture

Ligament repair as needed

- SL ligament repairable
 - Direct repair where possible
 - Suture anchors
 - Reinforce S-L repair with DICL
- SL ligament not repairable
 - Dorsal capsulodesis
 - Tenodesis (Brunelli)

Dorsal Approach- Repair SL Ligament

Volar Approach

Lunate dislocated volarly

Volar mid-carpal ligament tear

Case

Case 2

Post-op Management

- Immobilization
- K-wire removal @8 weeks
- D/C cast and ROM at 10-12 weeks
 - Can begin wrist ROM earlier in reliable pt

Complications

- Arthrosis
- Avascular necrosis of scaphoid /lunate (disruption of RSL)
 - Transient ischemia more common
- Median neuropathy
- Residual carpal instability
- STIFFNESS!

Outcomes

- Poor prognosis for full return to previous function
- Poor prognostic factors:
 - Open injuries
 - Delayed treatment (after 45 days= sig. worse outcomes)
 - Osteochondral fractures of the head of the capitate
 - Carpal malalignment
- Nearly all patients experience decreased grip strength and range of motion
- Arthritis on imaging does not correlate with functional outcome scores
- Usually stiff, low pain, functional wrist despite arthrosis

Outcomes

25 transcaphoid PLFDs

- ORIF scaphoid, dorsal approach, LTIL repaired, and LT pinned
 - 45-month f/u
 - 88% returned to work
 - F/E 113°
 - Grip 80% of uninjured side
 - NO arthritis

14 transcaphoid PLFDs

- ORIF scaphoid, dorsal approach
 - F/E 112°
 - + Midcarpal OA 92%

Knoll, JHS 2005

Herzberg, JHS (Br) 2002

Summary

- High clinical suspicion
- Urgent closed reduction
- Open reduction, internal fixation, and ligament repair
- Advise pts about stiffness, weakness, and development of arthritis
 - 70-80% ROM and grip strength is a good result

Thank you!

Acknowledgements

- Nikki Schroeder
- Igor Immerman
- Nico Lee
- Monty Cardon

