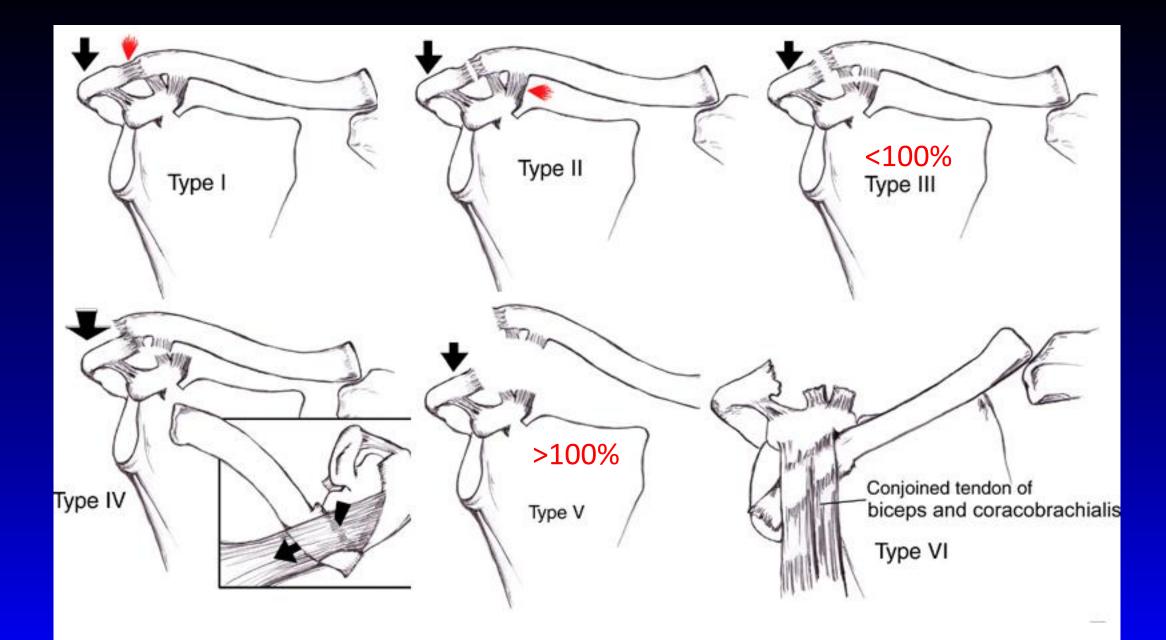
Acromioclavicular Joint Injuries: When and How to Stabilize

Dr. Niloofar Dehghan Associate Professor - Department of Orthopaedic Surgery, University of Arizona, Phoenix Banner University Medical Center; The CORE Institute

I (and/or my co-authors) have something to disclose.


Detailed disclosure information is available via:

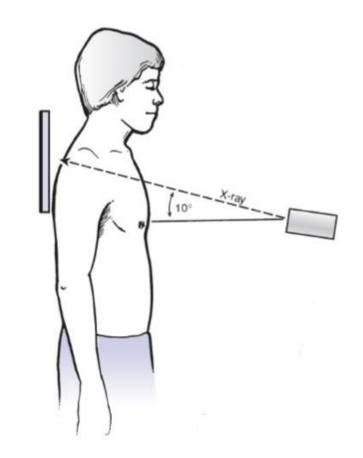
"My Academy" app;

Printed Final Program; or

AAOS Orthopaedic Disclosure Program on the AAOS website at http://www.aaos.org/disclosure

Acromioclavicular Joint Injuries: Diagnosis and Management

Simovitch, Ryan MD; Sanders, Brett MD; Ozbaydar, Mehmet MD; Lavery, Kyle BS; Warner, Jon J. P. MD

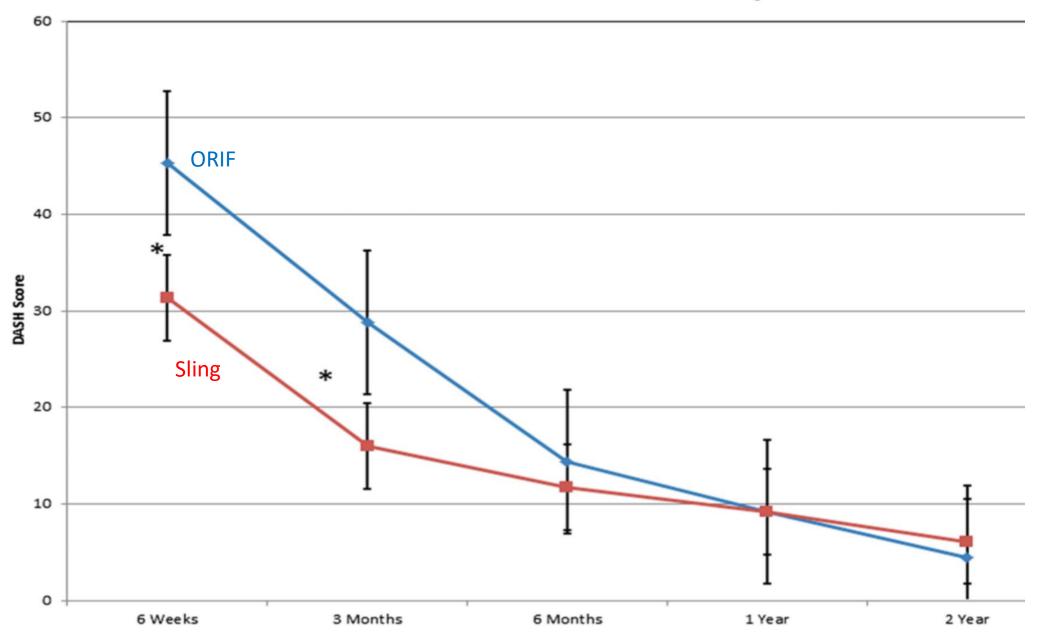

Туре	AC Ligaments	CC Ligaments	Deltopectoral Fascia	Radiographic CC Distance Increase	Radiographic AC Appearance	AC Joint Reducible	
I	Sprained	Sprained Intact		Normal (1.1 to 1.3 cm)	Normal	N/A	
11	Disrupted	Sprained	Intact	<25%	Widened	Yes	
	Disrupted	Disrupted	Disrupted	25%-100%	Widened	Yes	
V	Disrupted	Disrupted	Disrupted	Increased	Posterior clavicle displacement	No	
V	Disrupted	Disrupted	Disrupted	100%-300%	N/A	No	
VI	Disrupted	Intact	Disrupted	Decreased	N/A	No	

* The type of AC injury can be discerned based on the pattern of ligament injury, AC joint position on radiographs, and whether the AC joint can be reduced on physical examination.

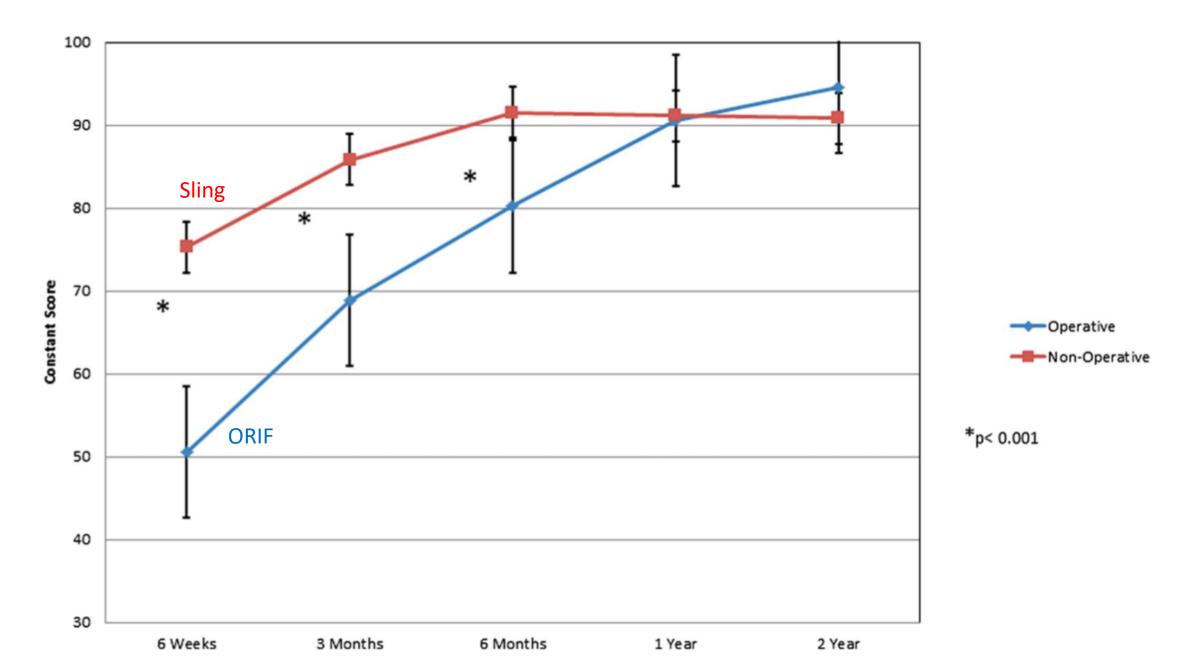
AC = acromioclavicular, CC = coracoclavicular, N/A = not applicable

- AP
- Zanca view
 - AP centered on the AC joint with 10-15 degrees of cephalic tilt

Images from: Corey Edgar. (2019) 'Acromioclavicular and Sternoclavicular Joint Injuries', In: Tornetta P, Ricci W, Ostrum R, McQueen M, McKee M, Court-Brown C, (eds). *Rockwood and Green's Fractures in Adults, 9th ed*. Philadelphia: Wolters Kluwer


When to fix?

Multicenter Randomized Clinical Trial of Nonoperative Versus Operative Treatment of Acute Acromio-Clavicular Joint Dislocation


The Canadian Orthopaedic Trauma Society

- Inclusion criteria:
 - Acute (< 3 weeks) AC dislocations (III, IV, V)</p>
 - Age 16 to 60, medically well
- Randomized to sling vs hook plate
- Comprehensive 2 year follow-up

DASH Score for AC Joint Injuries

Constant Score for AC Joint Injuries

Joint Reduction Better with ORIF

- Hook Plate (n=40): 4 dislocated, 14 subluxated, 22 reduced
- Non-operative (n=43) : 43 subluxated or dislocated
- P=0.001

Operative Versus Nonoperative Management of Acute High-Grade Acromioclavicular Dislocations: A Systematic Review and Meta-Analysis

Nicholas Chang, MBBS, Andrew Furey, MD, MSc, FRCSC, and Anton Kurdin, MD

- 19 studies (n = 954)
- ORIF:
 - Better cosmetic outcome (OR = 0.05; P < 0.00001)</p>
 - Better radiographic reduction (OR = 25; P < 0.0001)
 - Constant scores favored the operative group, but not reach MCID (MD = 3.1; P = 0.03)
- Nonoperative:
 - Faster return to work (MD = 4.2, P < 0.0001)
 - Lower implant complications (OR = 7.2, P < 0.0001)
 - Reduced infection rate (OR = 3.7, P = 0.007)
- No difference for DASH, return to sport, radiologic evidence of OA, and need for surgery after failed management.

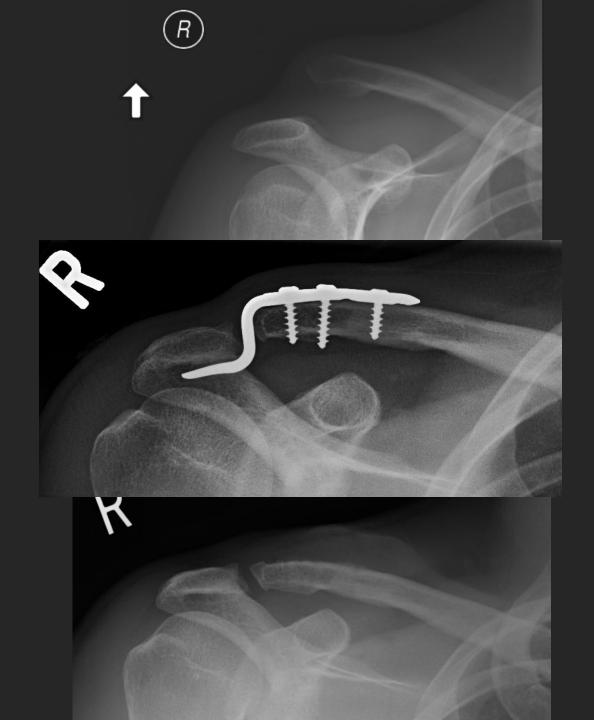
	Op	Operative		Nonoperative			Mean Difference		Mean Difference	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI	
1.1.1 Randomized Control Trial	s									
COTS 2015	94.63	5.59	25	90.84	15.92	23	17.5%	3.79 [-3.08, 10.66]		
Joukainen 2014 Subtotal (95% CI)	83	16	16 41	85	7.5	9 32				
Heterogeneity: $Tau^2 = 0.00$; Chi^2	= 0.97, df	= 1 (P =	0.32);	$1^2 = 0\%$						
Test for overall effect: $Z = 0.62$ (I										
1.1.2 Cohort Studies										
Fremerey 2005	0	0	42	0	0	38		Not estimable		
Gstettner 2008	90.4	12.9	24	80.7	17.4	17	8.7%	9.70 [-0.05, 19.45]		
Natera (Combined 2015+2016) Subtotal (95% CI)	93.9019	4.9181	31 55	91.05	7.35	21 38	64.1% 72.8%			
Heterogeneity: $Tau^2 = 9.40$; Chi^2	= 1.67, df	= 1 (P =	0.20);	$l^2 = 409$	6					
Test for overall effect: $Z = 1.55$ (I	P = 0.12)									
Total (95% CI)			96			70	100.0%	3.14 [0.27, 6.02]		

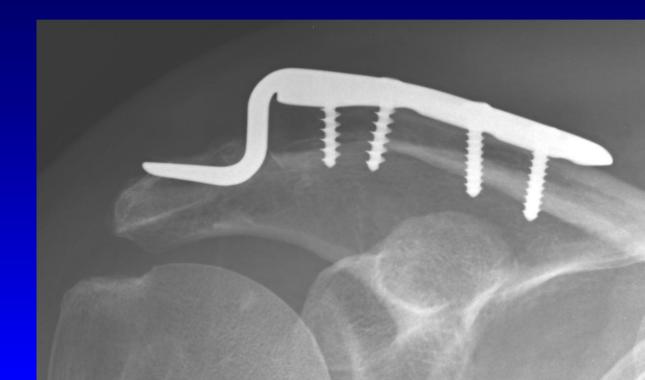
Return to work

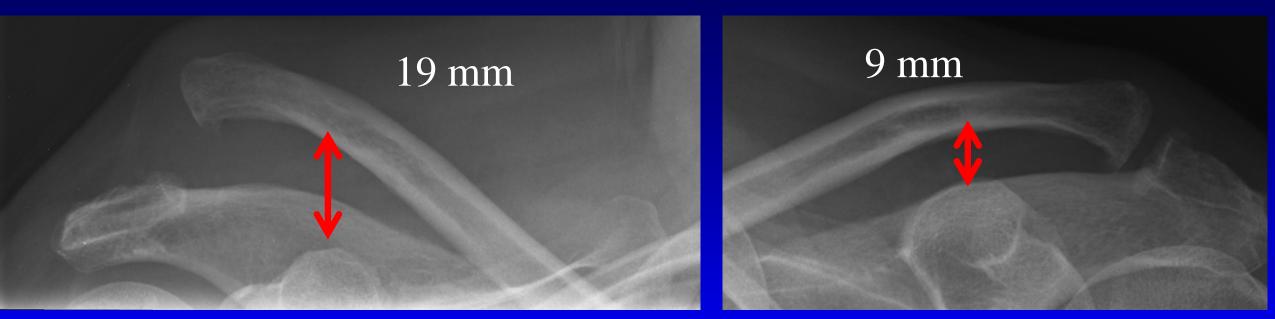
	O	perative	e	None	operativ	/e		Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Bakalim 1974	12	3	19	5	3.5	22	21.6%	7.00 [5.01, 8.99]	
Bannister 1989	11	0	0	4	0	0		Not estimable	
COTS 2015	0	0	28	0	0	27		Not estimable	
Fremerey 2005	7	2.7	34	3.7	2.3	33	25.5%	3.30 [2.10, 4.50]	
Galpin 1985	6.8	0	14	2.6	0	19		Not estimable	
Larsen 1986	8	5	39	6	3	40	22.5%	2.00 [0.18, 3.82]	
Press 1997	11.3	8.675	16	3.5	4.325	10	9.4%	7.80 [2.77, 12.83]	
Rosenorn 1974	9	2.25	11	6	2.75	11	21.0%	3.00 [0.90, 5.10]	
Total (95% CI)			133			135	100.0%	4.17 [2.28, 6.06]	
Heterogeneity: Tau ² :	= 3.27; 0	$Chi^2 = 1$	7.31, 0	df = 4 (f)	P = 0.00)2); I ² =	= 77%		
Test for overall effect									-10 -5 0 5 10
				5 U					Favors Operative Favors Nonoperative

So when is surgery indicated?

Surgical indications	Contraindications to surgery			
• Young, healthy, active individual	• Elderly patient			
• Grade V (>100% displaced)	Osteoporosis or poor bone quality			
Open or impeding open	Sedentary lifestyle			
• Poly-trauma	Poor surgical candidate			
	• Poor compliance (substance abuse, ETOH)			

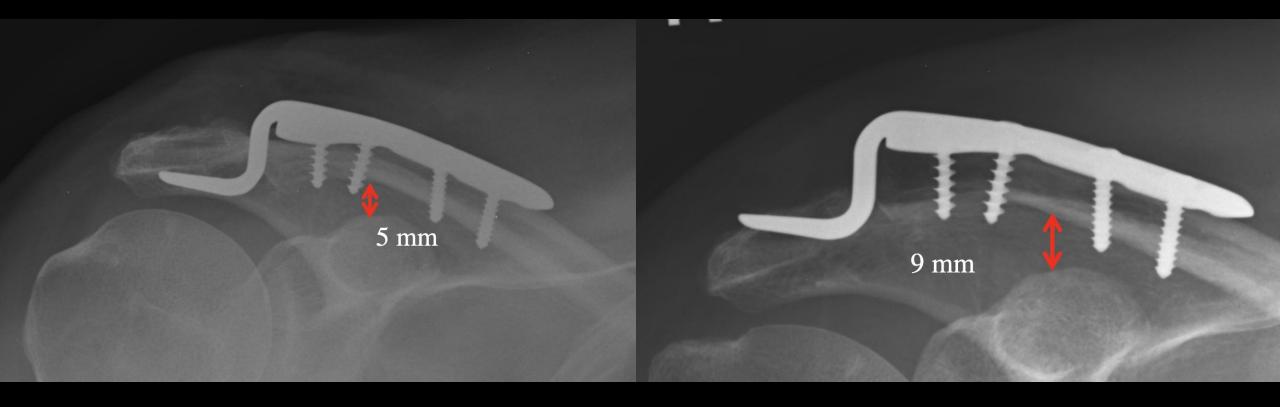

How to fix?


• Endobutton fixation (eg Tightrope)



Complications

- Over reduction
- Acromial erosions
- Hardware removal in most



Assess coraco-clavicular distance

Injured AC joint

Normal AC joint

Radiographic displacement of acute acromioclavicular joint dislocations fixed with AC TightRope

Anell Olivos-Meza, PhD, Arturo Almazán-Diaz, MD, José Alberto Calvo, MD, César Alejandro Jiménez-Aroche, MD, Marco Vinicio Valdez-Chávez, MD, Francisco Pérez-Jiménez, MD, Clemente Ibarra, PhD, Francisco Cruz-López, MD ^{*}

Orthopedic Sports Medicine, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico

- 27% postoperative displacement:
 - 19% partial loss of reduction
 - 8% failure

Open Access Journal of Sports Medicine

open access to scientific and medical research

Open Access Full Text Article

Complications following arthroscopic fixation of acromioclavicular separations: a systematic review of the literature

- Complications
 - Hardware irritation 35%
 - Coracoid/clavicle fracture 5%
 - Loss of AC joint reduction 27%
 - Hardware migration into the clavicle/coracoid up to 89%

Summary

• Patient selection is key

- AC joint repair
 - Surgery can improves reduction
 - No difference in functional outcomes
 - Indications still unclear

Thanks!

Niloofar.dehghan@thecoreinstitute.com