The Critically Ill Overdose Patient

Craig Smollin MD Professor of Clinical Emergency Medicine, UCSF Medical Director, California Poison Control System- SF Division

Disclosure

• I have no relevant financial relationships with the manufacturers of any commercial products discussed in this presentation.

Principles For Managing The "Sick" Poisoned Patient

- Don't forget the ABC's and good supportive care
- The history is often unreliable
- Collateral information is critical (What, Where, When, How?)
- Look for clues on the physical examination
- Look for clues in the laboratory data (something feels off)

UCSF Medical Center

Three Crashing Toxicology Patients...

- Hyperthermia
- Acidosis
- Hypotension

Case #1 – "Hot and Bothered"

- A 33-year-old female presents to the ED with altered mental status.
- She was at a concert with friends using MDMA, and suddenly became less responsive.
- In the ED, the she has a witness generalized tonic clonic seizure and is now post ictal.

Case #1: What would you do?

UCSF Medical Center

- A) Immediate intubation
- B) Tylenol 1 gram IV
- C) Start cold IV fluids
- D) Cool mist with fans
- E) Ice water bath

Drug-induced Hyperthermia

Drug-induced syndrome	Associated drugs
Neuroleptic malignant syndrome	Antipsychotics (haloperidol, olanzapine), some antiemetics (metoclopramide), withdrawal of antiparkinson drugs
Serotonin toxicity	Serotonin reuptake inhibitors, monoamine oxidase inhibitors, dextrometorphan, tramadol, tapentadol, linezolid, St John's wort (toxicity most often occurs when the drugs are used in combination)
Anticholinergic toxicity	Antispasmodics, anticholinergic drugs, plant alkaloids (such as belladonna, <i>Brugmansia</i>) and mushrooms (e.g. <i>Amanita</i>)
Sympathomimetic syndrome	Phenthylamines, e.g. amphetamines, methamphetamines (MDMA), cocaine, monoamine oxidase inhibitors
Malignant hyperthermia	Volatile anaesthetics and depolarising muscle relaxants, e.g. suxamethonium
Uncoupling of oxidative phosphorylation	Salicylates in overdose, dinitrophenol

Jamshidi N et. al Aust Prescr. 2019

Main physiological effects of severe hyperthermia

System	Parameter	Clinical Implications
CV	TachycardiaVolume depletionHypotension	Adequate fluid resuscitation
CNS	EncephalopathySeizuresComa	 Treat seizures with benzodiazepines May be confused with meningitis
Renal/Met	 Acute Kidney Injury Rhabdomyolysis Electrolyte disturbances (hyponatremia, hyperkalemia) 	 Adequate fluid resuscitation Treat hyperkalemia
Heme	Disseminated intravascular coagulationThrombocytopenia	Risk of bleeding with invasive procedures
GI	Edema and hemorrhage (regional ischemia)Elevation of liver function tests	Will contribute to hypovolemia

Multi-organ system dysfunction!!

Case #1 – Hot and Bothered

- Physical Exam:
 - Vitals: BP 170/100, HR 132, RR 24, O2 sat 99%, Temp 42° C
 - Pupils 7 mm and reactive bilaterally
 - Skin hot to touch and diaphoretic
 - Neuro eyes closed, not following commands, localizes to painful stimulus.

Hyperthermia – Management

• Severity of damage is related to the <u>degree</u> and <u>duration</u> of hyperthermia.

Casa DJ, et. al. Med Sci Sports Exerc. 2010 PMID:20559063.

Hyperthermia – Management

- Target = 39°C (102.2°F)
- Within 30 minutes
- Ideally within 15 minutes!!
- 0.15 °C/min

Cooling Rate (°C/min)

Adapted from McDermott et. al, Journal of athletic training, 2009

Cooling Rate (°C/min)

Adapted from McDermott et. al, Journal of athletic training, 2009

Photos courtesy of Dr. Stephen Petrou

GENERAL MEDICINE/ORIGINAL RESEARCH

Tarp-Assisted Cooling as a Method of Whole-Body Cooling in Hyperthermic Individuals

Yuri Hosokawa, PhD, ATC*; William M. Adams, PhD, ATC; Luke N. Belval, MS, ATC; Lesley W. Vandermark, PhD, ATC; Douglas J. Casa, PhD, ATC

*Corresponding Author. E-mail: yuri.hosokawa@uconn.edu, Twitter: @K_S_Institute.

Cooling Rate = 0.17°C/min

Tarp Assisted Cooling with Oscillation (TACO)

UCSF Medical Center

Malignant Hyperthermia

- Pharmacogenetic disorder (ryanodine receptor)
- Exposure to inhalation agents (halothane, isoflurane, sevoflurane etc.)
- And...succinylcholine (depolarizing neuromuscular blockers)
- <u>Key clinical features:</u> elevation of ETCO2, muscle rigidity, rhabdomyolysis, hyperthermia, tachycardia, acidosis and hyperkalemia.
- Mortality of 80% without treatment \rightarrow Give Dantrolene!

Toxin Induced Life Threatening Hyperthermia Pearls

- Supportive Care
- Benzodiazepines for agitation
- Intubation and paralysis
- Cold water/ice water emersion
- Temperature goal 39 °C within 15-30 minutes

Case #2: Profound Acidosis

- 36-year-old female was found in a hotel room with acute intoxication.
- Initial Vital Signs: HR 95 bpm, BP 131/77, RR 27, O2 Sat 100% Temp 97.5.
- Physical Exam: GCS 8, Lungs clear, Heart normal
- VBG: pH 7.02, pCO2 20

Case #2: Profound Acidosis

- 36-year-old female was found in a hotel room with acute intoxication.
- Initial Vital Signs: HR 95 bpm, BP 131/77, RR 27, O2 Sat 100% Temp 97.5.
- Physical Exam: GCS 8, Lungs clear, Heart normal
- VBG: pH 7.02, pCO2 20

Case #2: What would you do?

- A) Immediate intubation ("GCS 8 intubate")
- B) Start sodium bicarbonate drip ("Base neutralizes acid")
- C) Start broad spectrum antibiotics and call the ICU
- D) Send every laboratory test you can think of
- E) All of the above

Case #2: Profound Acidosis

- 36-year-old female was found in a hotel room with acute intoxication.
- Initial Vital Signs: HR 95 bpm, BP 131/77, RR 27, O2 Sat 100% Temp 97.5.
- Physical Exam: GCS 8, Lungs clear, Heart normal
- VBG: pH 7.02, pCO2 20
- Labs: Na 142, K 4.3, Cl 113, HCO3 6, BUN9, Cr 1.04, Gluc 120, AG = 27

The "KULTO" of Anion Gap Acidosis

Ketones	Uremia	Lactate	Toxic Alcohol	Organic Acids
Alcoholic Ketoacidosis Diabetic Ketoacidosis Starvation Ketosis Salicylates Isopropyl alcohol	Renal Failure	Metformin Isoniazid Cyanide Carbon Monoxide Beta Agonists Un-couplers Dinitrophenol Salicylates NRTIs Non-tox: Sepsis hypoperfusion Others	Ethylene Glycol Methanol Rare alcohols (glycols)	Pyroglutamic Acid (APAP) Inborn errors of metabolism
SEND KETONES	CHECK RENAL FUNCTION	CHECK LACTATE	SUROGATE MARKERS SEND LEVELS	THINK ABOUT IT SEND APAP

Case #2: Profound Acidosis

- 36-year-old female was found in a hotel room with acute intoxication.
- Initial Vital Signs: HR 95 bpm, BP 131/77, RR 27, O2 Sat 100% Temp 97.5.
- Physical Exam: GCS 8, Lungs clear, Heart normal
- VBG: pH 7.02, pCO2 20
- Labs: Na 142, K 4.3, Cl 113, HCO3 6, BUN9, Cr 1.04, Gluc 120, AG = 27
- Additional Labs:
 - Lactate 5 mmol/L
 - Ketone undetectable
 - Ethanol negative
 - Serum Osm 350
 - Measured Osm 294

The "KULTO" of Anion Gap Acidosis

Ketones	Uremia	Lactate	Toxic Alcohol	Organic Acids
Alcoholic Ketoacidosis Diabetic Ketoacidosis Starvation Ketosis Salicylates Isopropyl alcohol	Renal Failure	Metformin Isoniazid Cyanide Carbon Monoxide Beta Agonists Un-couplers Dinitrophenol Salicylates NRTIS Non-tox: Sepsis hypoperfusion Others	Ethylene Glycol Methanol Rare alcohols (glycols)	Pyroglutamic Acid (APAP) Inborn errors of metabolism
SEND KETONES	CHECK RENAL FUNCTION	CHECK LACTATE	SUROGATE MARKERS SEND LEVELS	THINK ABOUT IT SEND APAP

Surrogate Markers

Surrogate Markers – Osmolar Gap

Time from ingestion

Fig. 3 Osmolal gap and anion gap in toxic alcohol poisoning

Case #2: Profound Acidosis

- 36-year-old female was found in a hotel room with acute intoxication.
- Initial Vital Signs: HR 95 bpm, BP 131/77, RR 27, O2 Sat 100% Temp 97.5.
- Physical Exam: GCS 8, Lungs clear, Heart normal
- VBG: pH 7.02, pCO2 20
- Labs: Na 142, K 4.3, Cl 113, HCO3 6, BUN9, Cr 1.04, Gluc 120, AG = 27
- Additional Labs:
 - Lactate 5 mmol/L
 - Ketone undetectable
 - Ethanol negative
 - Serum Osm 350
 - Measured Osm 294

Management of toxic alcohols

- Supportive care
- Administer blocking agents
 - Fomepizole Loading dose 15 mg/kg (up to 1.5 grams)
 - Ethanol
- Hemodialysis

Blood Purification in Toxicology: Reviewing the Evidence and Providing Recommendations

Profound Acidosis and Toxic Alcohols Pearls

- Calculate the anion gap
- Use "KULTO" to narrow the differential diagnosis
- Think toxic alcohols when ketones and lactate are normal in the setting of profound acidosis
- Treat with blocking agents and hemodialysis

Case #3: Hypotension and Bradycardia

- 16-year-old female presents one hour after an intentional overdose of of an antihypertensive medication.
- Vital Signs: BP 73/50, HR 65, RR 18, O2 sat 98%

Case #3: Hypotension and Bradycardia

- 16-year-old female presents one hour after an intentional overdose of of an antihypertensive medication.
- Vital Signs: BP 73/50, HR 65, RR 18, O2 sat 98%

Toxicology DDx Hypotension and Bradycardia

- ABCD'S
 - A Alpha 2 agonists (e.g. clonidine)
 - B Beta Blockers
 - C Calcium channel blockers
 - D Digoxin
 - S Sedative Hypnotics

Hypotension and Bradycardia

- 16-year-old female presents one hour after an intentional overdose of of an antihypertensive medication.
- Vital Signs: BP 83/50, HR 65, RR 18, O2 sat 98%
- Further history She ingested verapamil.

Calcium Channel Blocker Toxicity

First Line Treatments and Desired Effects

Treatment	Desired Effect
Intravenous Fluids	Intravascular volume repletion, increase blood pressure
Intravenous Calcium	Increase cardiac contractility, increase blood pressure
Vasopressors Norepinephrine Epinephrine Dobutamine	Increase blood pressure Increase cardiac contractility, increase heart rate Increase cardiac contractility
High Dose Insulin with Glucose (HIE)	Increase cardiac contractility and blood pressure
Atropine	Increase heart rate
	Mauda at al Critical Cara Mad 2017 Mar. 15(2), a206 a21

Maude et. al Critical Care Med. 2017 Mar; 45(3): e306–e315.

Critical Care Management of Verapamil and Diltiazem Overdose With a Focus on Vasopressors: A 25-Year Experience at a Single Center Michael Levine, MD; Steven C. Curry, MD; Angela Padilla-Jones, RN; Anne-Michelle Ruha, MD

- 48 patients with verapamil or diltiazem overdose
- IV fluids and vasopressors used almost exclusively
- Doses of vasopressors higher than usual
 - Norepinephrine 100 ug/min Dopamine 100 ug/kg/min
- Many patients required more than one pressor (up to five)

High Dose Insulin (HIE)

- Bolus 1 unit/kg
- Start drip at 1 unit/kg/hour
- Start dextrose infusion (D10)
- Measure glucose at frequent intervals initially

HIE Evidence?

- Case series
 - Espinoza TR, Bryant SM, Aks SE. Hyperinsulin therapy for calcium channel antagonist poisoning: A seven-year retrospective study. Am J Ther. 2013;20:29–31.
 - Boyer EW, Duic PA, Evans A. Hyperinsulinemia/euglycemia therapy for calcium channel blocker poisoning. Pediatr Emerg Care. 2002;18:36–37
 - Boyer EW, Shannon M. Treatment of calcium-channel-blocker intoxication with insulin infusion. N Engl J Med. 2001;344:1721–1722.
 - Yuan TH, Kerns WP, 2nd, Tomaszewski CA, et al. Insulin-glucose as adjunctive therapy for severe calcium channel antagonist poisoning. J Toxicol Clin Toxicol. 1999;37:463–474.

Observational Studies

- Bryant SM, Espinoza TR, Aks SE. Seven years of high dose insulin therapy for calcium channel antagonist poisoning. Clin Toxicol. 2009;47:751.
- Greene SL, Gawarammana I, Wood DM, et al. Relative safety of hyperinsulinaemia/euglycaemia therapy in the management of calcium channel blocker overdose: A prospective observational study.Intensive Care Med. 2007;33:2019–2024.
- Animal Studies

Therapy for Patients Refractory to 1st Line Agents

Therapy for Patients Refractory to 1st Line Agents

- "higher" dose insulin up to 10 units/kg/hour
- Pacing
- Methylene Blue
- Intralipid
- ECMO

CCB Overdose Pearls

- Remember the ABCDS of hypotension and bradycardia.
- Ultrasound and can be a useful tool for directing management.
- High dose vasopressors may be necessary.
- High dose insulin therapy is also an important adjunct.
- Consider ECMO if available.

