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UC-Wide Databases Increase Research Potential

UNIVERSITY OF CALIFORNIA . .
HEALTH UC Health Patient Demographics
Gender Race/Ethnicity sV Age Group Active? PCP?
All All Al All Al Al
Most Recent Visit Date Range Age Group Race/Ethnicity
January 2012 to November 2022 65+ . a‘ white [ 2,814.484|

and MNull values

7,494,317 Total UC Health Patients 5164 e | oo - .mﬂ; 764,059

wosees SR ws A terace [ fasa 17
I

217 ! Black or African Ami.. I351|152

Patient Volume by Home le Code

Muftirace § {124 285

<2 'l
82,086 Native Hawaiian or .. |34 820
. Unknown 10_0?4| American Indian or .. {15, 947
Gender Primary Care Population
6,689,174

' 795,143
Other
Non Primary Care Patients Primary Care Patients
21,757
Social Vulnerability Index Most Recent Financial Class

(4 Indicates least vulnerable)

Commercial

2‘1‘. Medicaid

- 1,757,200 Medicare
.1.25?.??6 Other

. 1,115,742 Other Public
Out of

State 334,331 Self-Pay

- 808 464 Unknown

e

Iaae,m

-

UNIVERSITY
O F @ 2023 Mapbar & OpenSireethinp

CALIFORNIA

HEALTH

Unknown

. 1,321,062

Bakar Computational Health
Sciences Institute



Connected Worldwide EHR Systems

We’re all in this journey together...
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Different stakeholders: academia, medical product industry, regulators,
government, payers, technology providers, health systems, clinicians, patients
Different disciplines: computer science, epidemiology, statistics, biomedical
informatics, health policy, clinical sciences

* Datain 18 different countries, with >369 million patient records from outside US
* 133 different databases with patient-level data from various perspectives:
* Electronic health records, administrative claims, hospital systems, clinical
registries, health surveys, biobanks
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Retrospectively Collected Data
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Retrospectively Collected Data
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“Deep Phenotyping”
for Chronic Low Back Pain
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Treatment for Phenotype #1

Big Data Can Help
Categorize Patients
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AL/ML for Predicting Patient-

Specific Treatment Response

Why predict patient-specific Length of Stay (LOS) and Discharge
Disposition?

* Anticipating Outcomes:

* Perioperative spine surgery complication is common [1],
and Al/ML tools can help predict how a specific patient will
respond to treatment, which is not a simple statistical
association

* Anticipating Economic Impact:

* Extended LOS in hospital after surgery has been identified
as a reliable predictor for catastrophic costs over $100,000
following spine surgery [2]

e Usage of rehabilitation services can account for 30% of the
cost of care [3,4]. Hence, an extended LOS and discharge to
rehabilitation care reflect worsening patient morbidity,
cost, and postoperative outcome.
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N_S—QI—_P Calculator

Enter Patient and Surgical Information

€ procedure Clear
7

Begin by entering the procedure name or CPT code. One or more procedures will appear below the procedure box. You will need to click on
the desired procedure to properly select it. You may also search using two words (or two partial words) by placing a '+' in between, for
example: "chol 1y + chol iography"

Reset All Selections

o Are there other potential appropriate treatment options? Other Surgical Options Other Non-operative options None

Piease enter as much of the following information as you can to receive the best risk estimates.
A rough estimate will still be generated if you cannot provide all of the information below.

Age Group Diabetes 0
Under 65 years + No %

Sex Hypertension requiring medication 0
Female + No +

Functional Status ) Congestive Heart Failure in 30 days prior to surgery €)

Independent : No ¥

Emergency Case O Dyspnea 0

No v No

ASA Class 0 Current Smoker within 1 Year 0
Healthy patient B No +

Steroid use for chronic condition €} History of Severe COPD )

No * No ¥
Ascites within 30 days prior to surgery 0 Dialysis 0
No v No v

Systemic Sepsis within 48 hours prior to surgery O Acute Renal Failure 9

None v No +
Ventilator Dependent ) BMI Calculation: €9
x
No + Height: in/ cm
Disseminated Cancer 0
No * Weight: b/ kg
Discharge to Nursing or Rehab Facility _ G - o €9 B 54.8% 10.7% Above Average
Sepsle . 10 20 30 40 50 60 70 80 90  100% 290 e AEouelivetage

| Predicted Length of Hospital Stay: 8 days

How to Interpret the Graph Above: Surgeon Adjustment of Risks €
o q This will need to be used infrequently, but surgeons may adjust the estimated risks if
ourRisk r Average Patient Risk oléRIsK they feel the d risks are und i 1. This should only be done if the
reason for the increased risks was NOT already entered into the risk calculator.

I X% 1 - No adjustment necessary v
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Data Flow for Machine Learning
Model Creation & Validation

1,484,912 Patients in the UCSF Electronic Health Records
(June 2012-April 2020)

: 9,906 Patients with CPT codes indicating Validation
Inclusion Spinal Fusion Surgery Set

6,228 Patients removed for indication of (>
Exclusion non-LSLFS, non-elective surgeries, ‘

or missing BMI / hospital length of stay

3,678 Patients Undergoing Manually ‘
Spinal Fusion Surgery Calculate NSQIP / \

Training
Set

Beginning of Patient’s Scores for Train Machine
Medical History Present Day Comparison Learning Models
. 1 to Predict Length

Variables Included (Before or on Index Date):

Demographics | How long will this of Stay (LOS) and

- BMI & age at time of surgery | patient stay in the Compare Discharge

- Smoking status | hospital after surgery? In-House Disposition

- Race / ethnicity N\ Models to /
- Diagnosis codes Index Date: Patient Undergoes

( Spinal Fusion Surgery ) NSQIP

Variables Describing Operation

- Type of instrumentation

- Staged procedure

- Additional Anterior / Anterolateral Approach
- Prior spinal fusion surgeries

Prediction Models for Length of Stay and Discharge Disposition in Elective Spine Surgery and Comparison to ACS NSQIP Risk Calculator. Ayush Arora, BSE, Deeptee Jain,
MD, Dmytro Lituiev, PhD, Dexter Hadley, MD, PhD, Atul J. Butte, MD, PhD, Sigurd Berven, MD, Thomas Peterson, PhD. Spine,2022




Predicting LOS

15Lirtlear Regression Model Validation
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Prediction Models for Length of Stay and Discharge Disposition in Elective Spine Surgery and Comparison to ACS NSQIP Risk Calculator. Ayush Arora, BSE, Deeptee Jain,
MD, Dmytro Lituiev, PhD, Dexter Hadley, MDD, PhD, Atul J. Butte, MD, PhD, Sigurd Berven, MD, Thomas Peterson, PhD. Spine in 2022




Predicting LOS

15Linlear Regression Model Validation

Current / Future Work with BACPAC
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Predicting Discharge Disposition
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Making wise choices...
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Prediction Models for Length of Stay and Discharge Disposition in Elective Spine Surgery and Comparison to ACS NSQIP Risk Calculator. Ayush Arora, BSE, Deeptee Jain,
MD, Dmytro Lituiev, PhD, Dexter Hadley, MDD, PhD, Atul J. Butte, MD, PhD, Sigurd Berven, MD, Thomas Peterson, PhD. Spine in 2022




Predicting LOS

15Linlear Regression Model Validation

Current / Future Work with BACPAC
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Takeaways:

* Prediction models built in-house
outperform the ACS NSQIP. This
could be attributed to:

* Task-specific models (trained
specifically for spine fusion)
* Site-specific data
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Prediction Models for Length of Stay and Discharge Disposition in Elective Spine Surgery and Comparison to ACS NSQIP Risk Calculator. Ayush Arora, BSE, Deeptee Jain,
MD, Dmytro Lituiev, PhD, Dexter Hadley, MD, PhD, Atul J. Butte, MD, PhD, Sigurd Berven, MD, Thomas Peterson, PhD. Spine 2023
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ealthcare Interoperability Resources (FHIR)

* FHIR is a system that securel
interacts with Electronic Health
Records

 Potential Uses:

* Dashboards
q )‘ * Apps
B ( ) * Wearable Devices
FHIR
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