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UC-Wide Databases Increase Research Potential



Connected Worldwide EHR Systems

• Data in 18 different countries, with >369 million patient records from outside US
• 133 different databases with patient-level data from various perspectives:

• Electronic health records, administrative claims, hospital systems, clinical 
registries, health surveys, biobanks
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Big Data Can Help 
Categorize Patients
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AL/ML for Predicting Patient-
Specific Treatment Response

Why predict patient-specific Length of Stay (LOS) and Discharge 
Disposition?

• Anticipating Outcomes: 
• Perioperative spine surgery complication is common [1], 

and AI/ML tools can help predict how a specific patient will 
respond to treatment, which is not a simple statistical 
association

• Anticipating Economic Impact: 
• Extended LOS in hospital after surgery has been identified 

as a reliable predictor for catastrophic costs over $100,000 
following spine surgery [2]

• Usage of rehabilitation services can account for 30% of the 
cost of care [3,4]. Hence, an extended LOS and discharge to 
rehabilitation care reflect worsening patient morbidity, 
cost, and postoperative outcome.
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Takeaways:
• Prediction models built in-house 

outperform the ACS NSQIP. This 
could be attributed to:

• Task-specific models (trained 
specifically for spine fusion)

• Site-specific data

Current / Future Work with BACPAC



Fast Healthcare Interoperability Resources (FHIR)

• FHIR is a system that securely 
interacts with Electronic Health 
Records

• Potential Uses:
• Dashboards
• Apps
• Wearable Devices

• Potential Users:
• Patients
• Provider
• Payers



Thanks!
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