

Conflict of Interest Disclosure

JOHNS HOPKINS

James R. Ficke

- I have no financial conflicts with this presentation
- Disclosures:
 - Research Funding, NIH; U.S. Dept of Defense
 - Balmoral; Stryker- Transdermal COMPRESS
 - DT MedTech- Prospective Trial H3 Total Ankle
 - Board of Directors, ABOS; Team Red White Blue
 - Board of Trustees, Orthopaedic Research & Education Foundation

Prevalence

- 1-3% extremity trauma
- More often penetrating trauma
 - GSW 46%
 - Blunt 19%
 - Stabbing 12%
- HIGHER Mortality
 - 3.3% LE
 - 6.3% UE
 - 20% pelvis

Injury Patterns

- Spasm
- Intimal flap
- External compression
 - Compartment syndrome
 - Hematoma
- Thrombus
- Laceration/transsection
 - External projectiles
 - Bone fragments

Goals

Identify vascular injuries

Reliably & accurately evaluate injury

Coordinate treatment

Diagnosis= Prompt Recognition

Successful diagnosis and management of extremity vascular injuries requires:

*Thorough history and physical

*High index of suspicion

*Rapid administration of care

Mechanism of injury heightens the surgeon's awareness of potential vascular insult

Considerations:

*Fracture Personality

*Presence of dislocation

*Blunt trauma vs penetrating trauma

High Risk Fractures

- Penetrating trauma
- High energy pelvic fractures
- Fractures Adjacent to major vessels
 - Distal Femur
 - Proximal Tibia
- Crush injuries

Fracture Specific Vascular Injuries 10

Clavicle Subclavian

Supracondylar humerus Brachial

Pelvic ring
 Gluteal, Iliac, Obturator

Distal femur
 Popliteal

Tibia plateau/ shaft
 Popliteal, tibial

Dislocations

- **Scapulothoracic dissociation 64-100%**
- **Knee dislocation 16%**

Blunt Trauma

- Stretching or shearing of vessels
- Intimal damage/dissection, thrombus
- Subtle clinical findings
- 27% amputation rate

Penetrating Injury

- Direct injury to vessel
 - Laceration/transection
- Exam findings- Not always obvious
- Delayed pseudo-aneursym and AVF
- 9% amputation rate

Physical Exam

Hard Signs

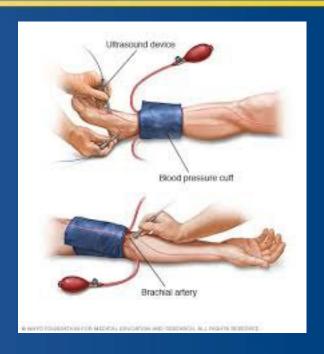
- Pulsatile bleeding
- Expanding hematoma
- Thrill at injury site
- Pulseless limb

Soft Signs

- Asymmetric limb temp
- Asymmetric pulses
- Injury anatomically-related nerve
- Hx immediate bleeding p injury

Emergency Management

- Control Bleeding
 - Compressive dressing
 - Judicious tourniquet
- Fluid resuscitation
- Reduce & splint fractures
- Re-evaluate



Ankle Brachial Index

- Indications
 - Asymmetric pulses
 - Soft exam findings
 - High energy tibia plateau fx
 - All knee dislocations

- ABI< 0.9:Vascular + Advanced Imaging
- ABI does not define extent or level of injury

Ankle Brachial Index

- Benefits
 - Available
 - Inexpensive
 - Negative predictive value 96% 100%
- Limited diagnosis
 - Venous injuries
 - False positive with arterial spasm
 Injuries can preclude cuff placement

Duplex Scan

- Technician dependent
- Time intensive
- Steep learning curve
- Limited indication in acute trauma patients

NETHOPAEDIC SURGERY

Angiography

- Historical Gold Standard
- Localizes the lesion
- Defines type and extent of lesion
 - Active hemorrhage vs occlusion
- Allows treatment planning embolization vs bypass

Angiography Disadvantages

- Patient risks Renal insult Anaphylaxis
 - latrogenic vessel injury
- Expensive
- Difficult to resuscitate patients
- Delays operative intervention

RTHOPAEDIC SURGEF

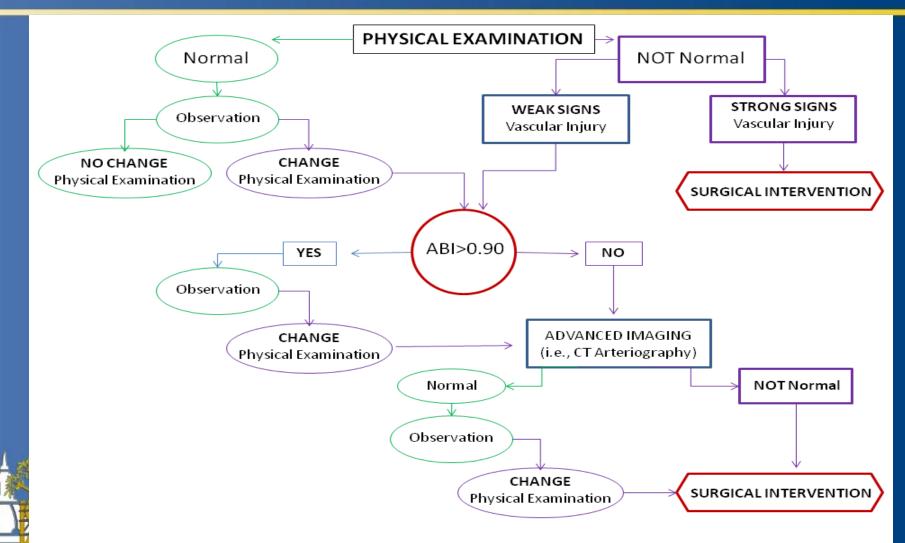
Multi-Detector CT Angiography (MDCTA)

- Replaced angiography as standard
- 95% sensitivity and 87% specificity
- Decreased contrast load
- Fast
- Cost-effective

CTA Disadvantages

- Cannot exclude all arterial dissections
- May still require angiography
- Limited resolution in presence of
 - Foreign bodies
 - Vascular calcifications

Surgical Exploration



- Indications:
 - Frank vascular injury
 - Vascular injury not amenable to endovascular repair
 - Expanding/pulsatile hematoma
 - Thrill at injury site
 - Pulseless limb

Evaluation Algorithm

JOHNS HOPKINS

Sequence of Surgical Treatment

Who goes first? Vascular or Orthopaedics

Treatment Decisions

Vascular Surgeon

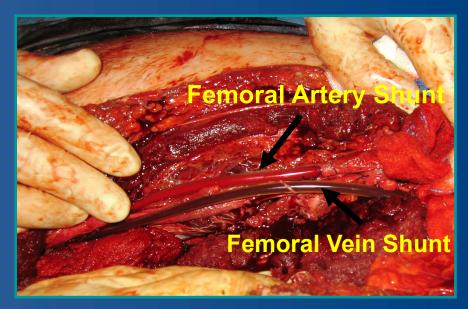
- Non-operative
- Ligation
- Temporary Shunt
- Direct Repair
- Bypass

JOHNS HOPKINS

Restoration of Blood Flow

- Revascularization of ischemic tissue
 - Fracture reduction
 - Joint relocation
 - Compartment syndrome release
 - Vascular repair

Reduce and stabilize fractures decrease pain and protect until definitive fixation



Restoration of Blood Flow-Temporary Vascular Shunting

- Damage control for injured blood vessels
- Placement of silicone tube to bypass injured segment of vessel(s)
- Effectively controls hemorrhage
- Rapidly restores blood flow to limb
- Less physiologic stress to patient

Sets stage for definitive grafting

JOHNS HOPKINS

Who Goes First?

 Meta-analysis: sequence (vascular vs ortho) does not affect amputation rate

 Traction upon vascular repair is not shown to lead to vascular compromise

Treatment

- Have a protocol in place
- Consider each patient individually
- Restore blood flow
- Debride devitalized tissue
- Stabilize fractures

Fasciotomy

- Diagnosis of acute compartment syndrome
- Arterial injury requiring repair
- Combined arterial venous injury
- Warm ischemia > 6hr
- Cold ischemia > 12hr

JOHNS HOPKINS

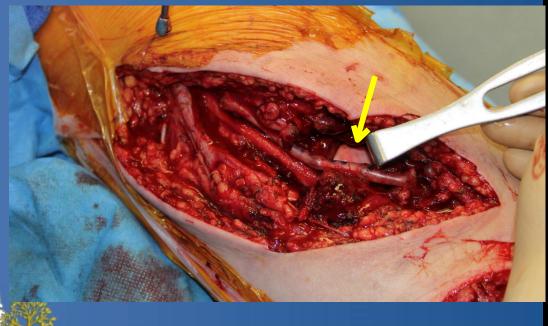
Prognostic Factors

- Soft tissue injury (crush)
- Level of vascular injury
- Collateral circulation
- Ischemia time
- Patient factors

Complications

- Compartment syndrome
- Tissue necrosis
- Infection
- Amputation
- Death

Case Example



- 30 yr old
- Open elbow dislocation
- Arterial bleeding observed in ED
- Vascular is consulted
- OR < 3 hours from injury

Direct repair brachial artery Ligament repair of elbow

ORTHOPAEDIC SURGERY

Vascular Injuries: Summary

Maintain high index of suspicion

- *Recognize common injury patterns
- *Thorough, repeated examination

Rapid recognition and treatment is paramount

Have a protocol for evaluation and treatment

References

- 1. Farber A, Tan TW, Hamburg NM, Kalish JA, Joglar F, Onigman T, Rybin D, Doros G, Eberhardt RT. Early fasciotomy in patients with extremity vascular injury is associated with decreased risk of adverse limb outcomes: A review of the National Trauma Data Bank. Injury 2012;43:1486-1491
- Ratnayake A, Worlton TJ: Role of prophylactic fasciotomy in contemporary vascular trauma practices. Injury 2021
- 3. Branco BC, Inaba K, Barmparas G, et al: Incidence and predictors for the need for fasciotomy after extremity trauma: A 10-year review in a mature level I trauma centre. Injury 2011;42:1157-1163.
- 4. Fowler J, Macintyre N, Rehman S, Gaughan JP, Leslie S. The importance of surgical sequence in the treatment of lower extrmeity injuries with concomitant vascular injury: A meta-analysis. Injury 2009;40:72-76
- 5. Spitler CA, Patch DA, McFarland GE, Smith WR: Assessment and Interventions for Vascular Injuries Associated With Fractures J Am Acad Orthop Surg 2022;30:387-394
- 6. Wlodarczyk JR, Thomas AS, Schroll R, et al: To shunt or not to shunt in combined orthopedic and vascular extremity trauma. J Trauma Acute Care Surg 2018;85:1038-1042.
- 7. Gilbert F, Schneemann C, Scholz CJ, et al: Clinical implications of fracture-associated vascular damage in extremity and pelvic trauma. BMC Musculoskelet Disord 2018;19:404.