

Robotic TKA 101: why robots now? Practical Tips on Implementation and Training Ramification

Nader Nassif, MD FAAOS

Chief, Division of Joint Replacement Surgery Fellowship Director, Arthroplasty Fellowship Hoag Orthopedic Institute, Irvine CA

UCSF Arthroplasty for the Modern Surgeon Napa, California September 2023

Hoag Orthopedic Institute

Disclosures

- Stocks: Rzzr Medical
- Consultant:
 - Depuy-Synthes
 - Rzzr Medical
- Institutional Education and Research Support
 - OREF Omega Grant
 - The Hoag Foundation
- Own shares in a physician owned hospital

Roadmap

WHY:

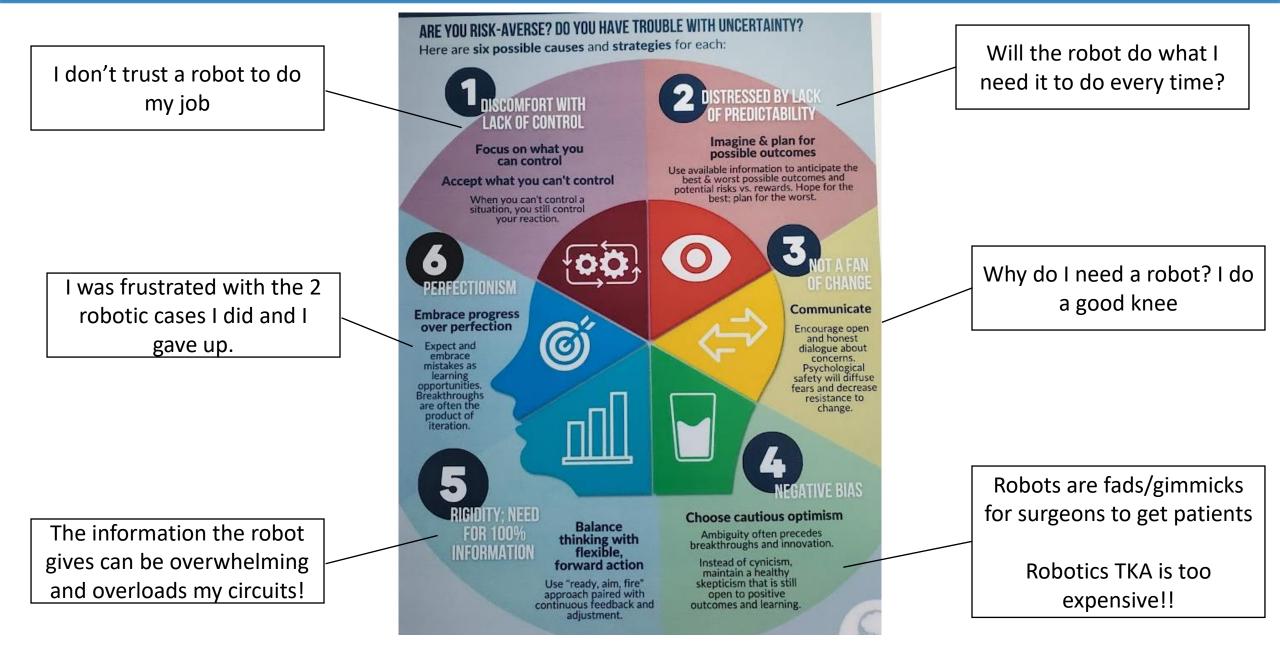
Why robotics? Does it make sense today?

HOW:

Learning from my mistakes what can make the transition easier

WHAT:

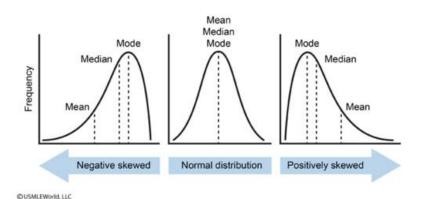
Personalized Alignment – Stefano Bini


WHEN AND WHERE:

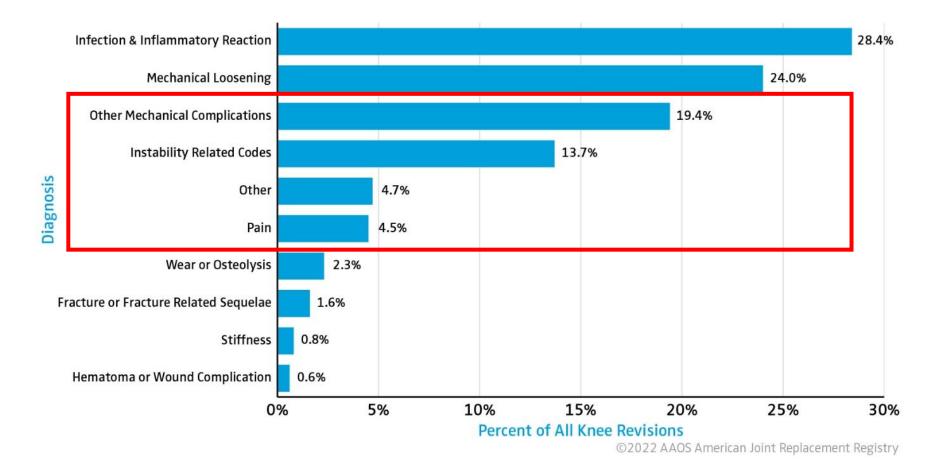
A right time? Right setting? – Keith Fehring



Biases against Adopting Robotics

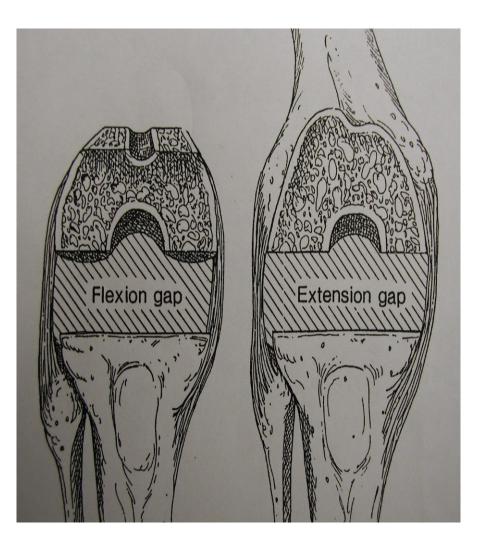


Why?



- TKA dissatisfaction rate remains around 20% despite....
 - Improved instrumentation, mechanical alignment, cement technique and cementless fixation
 - Improved joint kinematics with more modern design

Reasons for Revision



AJRR 2022

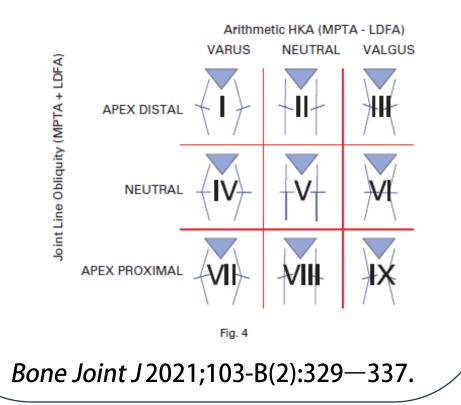
Evolution in Thought about Knee Alignment

Evolution in Thought about Knee Alignment

Optimizing Asymmetric Native Knee Flexion Gap Balance Promotes Superior Outcomes in Primary Total Knee Arthroplasty

Menenghini et al J Am Acad Orthop Surg 2023;00:1-11

Laxity Profiles in the Native and Replaced Knee—Application to Robotic-Assisted Gap-Balancing Total Knee Arthroplasty

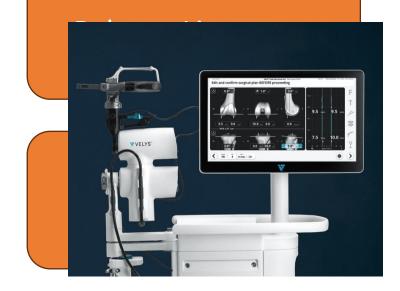

Sami Shalhoub, MS^{a,*}, Wayne E. Moschetti, MD, MS^b, Leonid Dabuzhsky, MD^c, David S. Jevsevar, MD, MBA^b, John M. Keggi, MD^d, Christopher Plaskos, PhD^a

The Journal of Arthroplasty 33 (2018) 3043-3048

KNEE

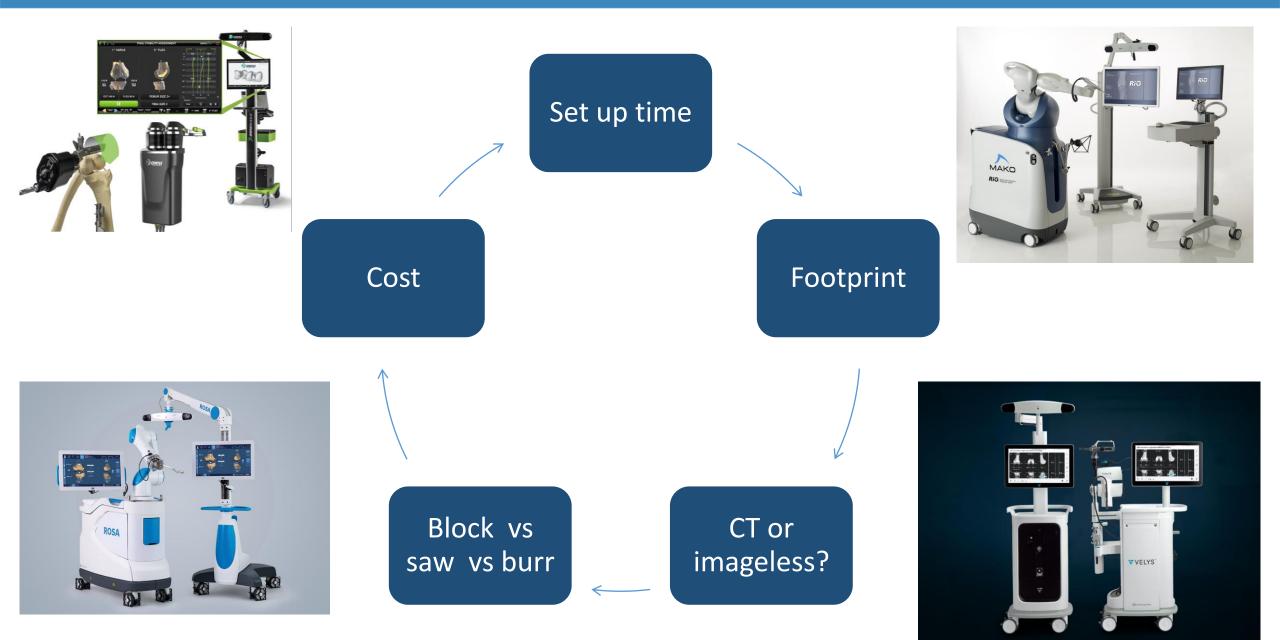
Coronal Plane Alignment of the Knee (CPAK) classification

A NEW SYSTEM FOR DESCRIBING KNEE PHENOTYPES



Evolution in Thought about Knee Alignment...and instrumentation

Mechanical Alignment


Edit and confirm PROADJUST™ Surgical Plan BEFORE proce

Restricted Kinematic Alignment

Kinematic Alignment

Hoag Orthopedic

- Surgical:
 - Improved precision in alignment and implant position.
 - Objectively evaluate native knee kinematics and compare the pre-post reconstruction data (be able to plan before 1 bony cut).
- Clinical:
 - Improved clinical outcomes?
 - Improved Survival?
- Economic:
 - Reduction in tray use
 - Reduction revisions?
 - Patient demand/consumerism

Potential Disadvantages of Robotics

- Learning Curve/ Time
- Footprint

Hoag Orthopedic Institute

- Capital Costs and Disposables
- Pin Site Morbidities

Better Accuracy

Robot-assisted total knee arthroplasty improves mechanical alignment and accuracy of component positioning compared to the conventional technique

Chang Hyun Nam, Su Chan Lee, Jin-Hong Kim, Hye Sun Ahn and Ji-Hoon Baek*

Journal of Experimental Orthopaedics (2022) 9:108

A biomechanical comparison between robotic and conventional total knee arthroplasty (TKA) in resection accuracy: a meta-analysis on cadaveric specimens

Sean B. Sequeira ¹, Grant T. Duvall and Henry Boucher

KNEE

Clinical results and patient-reported outcomes following robotic-assisted primary total knee arthroplasty

A MULTICENTRE STUDY

Bone Jt Open 2022;3-7:589–595.

Better Accuracybut is it better clinical outcomes

Proceedings of The Knee Society 2022	
Image-Free Robotic-Assisted Total Knee Arthroplasty Resul Quicker Recovery but Equivalent One-Year Outcomes Comp Conventional Total Knee Arthroplasty	ared to
Irfan A. Khan, ATC ^a , John R. Vaile, BS ^a , Cristian A. DeSimone, BS ^a ,	Primary Arthroplasty
Douglas E. Parsell, PhD ^b , Jared D. Heinze, MPH ^c , Alexandra Alessi, BS ^c , Winnie Xu, BA ^d , Roshan P. Shah, MD ^d , Trevor Resolution	Robot-Assisted Total Knee Arthroplasty Does Not Improve
Nathan L. Cafferky, MD ^c , Jess H. Lonner, M	Ithough DATEA likely cocults in higher logic Outcomes
Not Surpr	hD ^{a, b, *} , Sang Jun Song, MD, PhD ^b angdong Seoul, Republic of Korea
Acta Orthopaedica 2023; 94: 60–79 aiming f	Or the same goal al of Arthroplasty 34 (2019) 1656e1661
Clinical and radiological outcon	AI TAKES WAS TO HISTHIFTCHE CYRCHEC.
versus conventional total knee arthroplasty: a syste review and meta-analysis of randomized controlled	
Pakpoom RUANGSOMBOON ^{1,2} , Onlak RUANGSOMBOON ^{3,4} , Chaturong PORNRATTANAMANEEWONG ² , Rapeepat NARKBUNNAM ² , and Keerati CHAREANCHOLVANICH ²	

ноад	
Ortho	pedic
Instit	ute

Authors [Reference]	Year	Level of Evidence	Results
Matassi et al [7]	2019	NA	Accelerometer-based navigation accurately achieved neutral mechanical alignment and optim implant position after TKA in patients with extraarticular deformity.
Kayani et al [1]	2019	NA	RA-TKA was associated with decreased postoperative pain, better early functional rehabilitatio and shorter time to hospital discharge compared with C-TKA. However, there was no difference medium to long-term functional outcomes between C-TKA and RA-TKA.
Kim et al [4]	2020	Ι	After a minimum follow-up of 10 years, no differences were found between RA-TKA and C-TK in terms of functional outcome scores, aseptic loosening, overall survival and complications. Considering the additional time and expense associated with RA-TKA, the authors did not rec ommend its widespread use.
Vaidya et al [5]	2020	I	Compared with C-TKA, RA-TKA is highly accurate in terms of the placement of prosthetic components in the coronal plane and mechanical alignment. In C-TKA, the joint line is elevated b can be accurately reestablished by RA-TKA, which can result in better patellofemoral kinematic
Batallier et al [9]	2020	IV	Compared with C-TKA, the Mako system reduced postoperative pain and improved implant placement. At 1 year after surgery, functional outcomes were equal or slightly superior with t Mako system.
Sires et al [8]	2021	NA	The Mako system showed high accuracy in achieving the preoperatively planned bone resecti and final coronal alignment of the limb.
Lei et al [6]	2021	Ι	Navigation and the robot improved alignment accuracy compared to patient-specific instrumen and C-TKA, although clinically there was no difference in postoperative outcomes.
St Mart and Goh [2]	2021	NA	RA-TKA improved component positioning and reduced alignment outliers compared with preoperative planning.
Siddiqi et al [3]	2021	NA	Compared with conventional C-TKA, RA-TKA has been shown in some studies to demonstrat greater reproducibility and accuracy in restoring mechanical alignment, with improved early functional outcomes and cost savings within 90 days of surgery.

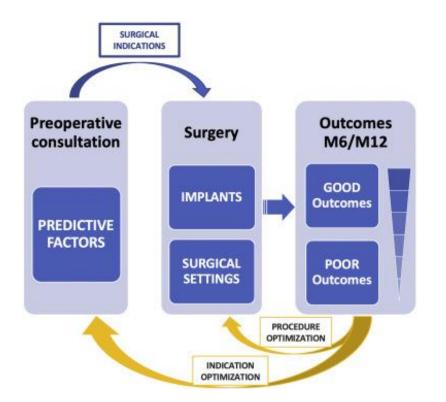
RA-TKA, robotic-assisted TKA; C-TKA, conventional TKA; NA, not available

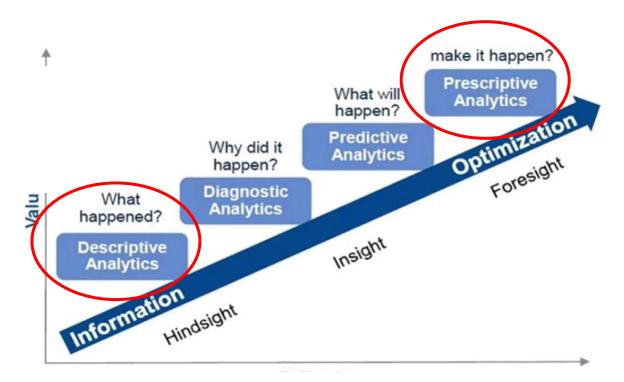
What DO we know today

- 1. Comparable in safety and complications to conventional TKA
- 2. Similar in pain and functional outcomes in the <u>short term</u>
- 3. Better accuracy of implant position
- 4. <u>Increased cost and possible</u> increased length of time

What we can't answer today

- 1. Mid to long term patient outcomes
- 2. Survival advantage?
- 3. Improvement in the TKA Albatross (20% unsatisfied).
- 4. Is the technology there yet.


Future of Robotics

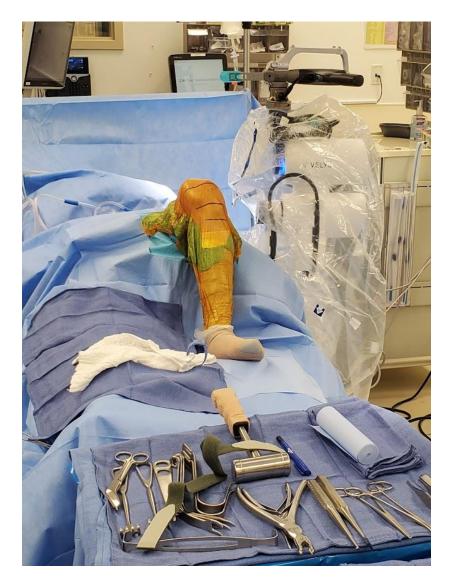

Systematic review

Hoag Orthopedic Institute

> Predictive Models for Clinical Outcomes in Total Knee Arthroplasty: A Systematic Analysis

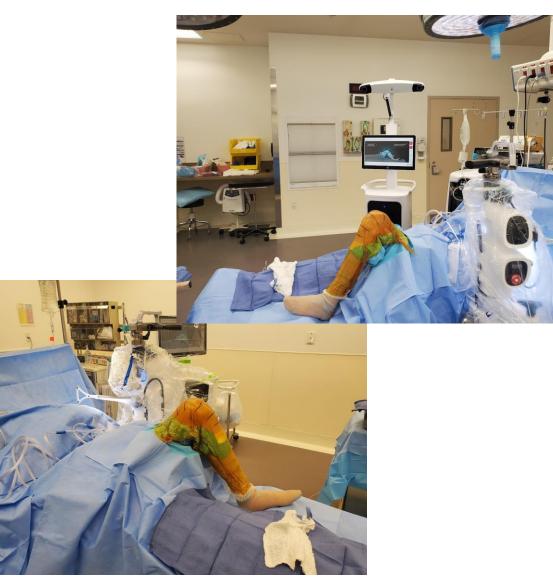
Cécile Batailler, MD ^{a, b, *}, Timothy Lording, FRACS ^c, Daniele De Massari, PhD ^d, Sietske Witvoet-Braam ^d, Stefano Bini, MD, PhD ^e, Sébastien Lustig, MD, PhD ^{a, b}

Future of Robotics = AI integration


100 STARTUPS USING ARTIFICIAL INTELLIGENCE TO TRANSFORM INDUSTRIES CONVERSATIONAL AI/ BOTS VISION AUTO ROBOTICS CYBERSECURITY No 💦 Maluuba ذ MindMeld 🐰 CYLANCE 🛛 🏷 sift science muTonomy drive.ai 😍 ИВТЕСН clarifai @Hronocam semantiomachines 0 and Rokid Sparkcognition depinstinct Mobvoi 出门间间 KITTAI snips Orbital Insight pilo?ai clara dispatch X. Shift Technology OARKTRACE AUTOMAT nexar Z 🖂 🗙 **BUSINESS INTELLIGENCE & ANALYTICS** AD, SALES, CRM DataRobot O TRIFACTA M rapidminer tame SIGOPT [PERSADO] Oppier CHORUS SALES Talkia deep Paxata context relevant Contaminr C S S logz.io DigitalGenius RESCI drawbridge CORE AI HEALTHCARE BANITINE SANITINE Ofreenome duoup MEDX' 2 zebra Oenlific two AR 100 affectiva C iCarbonX Atomwise Reparation Cooperation CognitiveScale estient Ovyager Labs BenevolentAl & Lunit SI SCALED Skymind Vicarious Digital Reasoning Sonsai AYASDI OTHER **FINTECH &** INSURANCE IOT/IIOT GIGSTER Prospera **TEXT ANALYSIS**/ COMMERCE GENERATION **CAPE** KENSHO **INNOVATI** 0000 RELUERIVER ROSS nanit 🕿комих Otextio 🔘 zymergen bloomreach SUMMIT **VERDIGRIS** NUMERAI alphasense fido.ai Descartes III gradescope Ö cortical.io amode.ai SIGHT MACHINE **CBINSIGHTS** talla Kasisto NarrativeScience 🖊

Why Integrate Robotics into my practice?

• Data showed equivalence


Hoag Orthopedic

- Understanding of TKA is changing
- Work with the technology to understand its potential
- Fellow Education

Lessons Learned: Room Setup

• Line of site

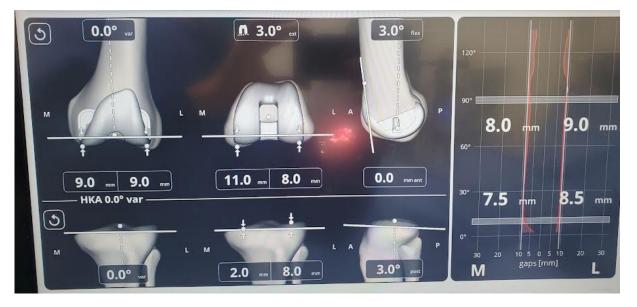

- Camera Slightly more superior
- Tubes and wires out of the way
- Drapes down
- Assistant's Position
- Footprint of the robot

Lessons Learned: Exposure

- Array Pin Placement (intra vs extra incisional)
- Optical Array Positioning
- Retractors to accommodate
 - Self retaining retractors
- Do More up Front

Hoag Orthopedic Institute

- Osteophyte removal
- Soft tissue release
- Patellar resection
- Sublux Tibia


Managing Data Overload!

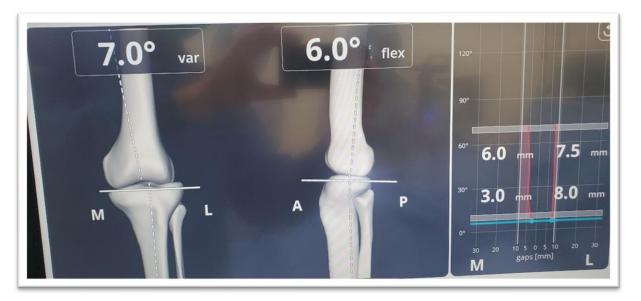
- Don't ignore fundamental understanding of the knee.
- Additional Data is both an advantage and disadvantage
 - Is the data accurate?
- Interpreting the data takes a little practice:
 - Evaluate the knee before looking at the numbers to make sure the numbers make sense
 - Ignore the full extension "J-curve"
 - The knee will get looser as the case goes on

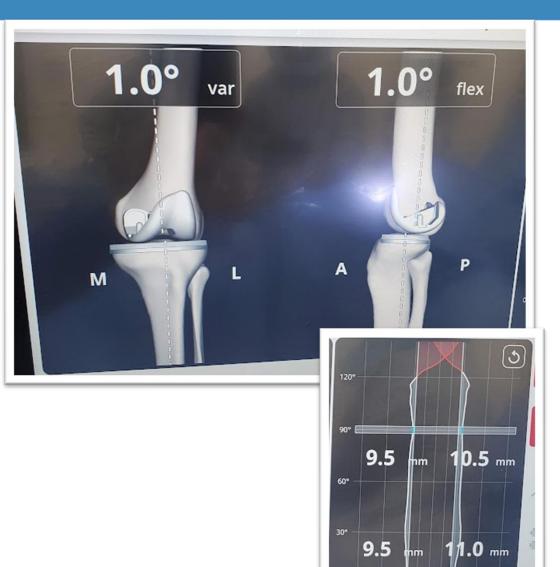
Assess initial leg alignment and ACCUBALANCE™ Graph

VELYS^{IM} Total Knee Femur First PS

Hoag Orthopedic Institute

My Workflow


Reading Styre Experition 101 ap a p?


- Don't chase numbers. Plan for the soft tissue releases!
- The plan is made before I make my first cut (femur first).
- Evaluate Balance in extension and flexion just like traditional instrumentation.

Before and After

Μ

The Learning Curve

Hoag Orthopedic Institute

- Each Robotic Knee System is unique but they have common elements.
- Learning Curve = 20 cases
 - J Orthop Surg Res. 2023 Jun 12;18(1):425
 - BMC Musculoskelet Disord. 2023 Apr 27;24(1):332 (18 cases)
 - ANZ J Surg. 2022 Nov;92(11):2974-2979. doi: 10.1111/ans.17975. Epub 2022 Aug 12.
 - Arthroplast Today. 2022 Jan 22;13:194-198
 - Eur J Orthop Surg Traumatol. 2023 Apr 27;1-7 (60 cases)

Gradually Increasing Complexity

Mild Correctable Deformities

Moderate Fixed deformities

Post traumatic

Hoag

Severe deformities and Restricted ROM.

Training Ramifications for Residents

- Recent survey <u>20% of senior residents</u> had rTKA as >50% of their experience.
- 45% believed Robotics improved their understanding of the surgical procedures
- 25% felt it negatively impacted their learning of traditional instrumentation
- Residents did not significantly impact Surgical time.

What happens when they go to fellowship

- There is a large variation in experiences with manual and robotic instrumentation before starting fellowship
- Fellowship applicants are asking about it
- Primary goal of Fellowship: To teach each fellows how to do a well balanced manually instrumented knee.
- Robotics can be a GREAT teaching tool :
 - Visualizing the knee balance graph
 - Improves their ability to do a better manual total knee
 - Getting through their learning curve faster and troubleshooting.
 - Robotics are NOT a substitute for learning how to do a traditional knee replacement

Take Home Points

loaq

- 1. <u>Robotics are no longer a fad.</u> They are an additional tool to achieve the goal of a perfect total knee reconstruction (whatever your philosophy is)
- 2. <u>rTKA is safe and efficacious</u>. Similar in short term outcomes
- 3. <u>Be Patient!</u> Learning curve is 20 knees
- 4. <u>Don't turn off your Brain!</u> Combination bony resection and soft tissue release
- 5. Fellows still need to <u>be proficient at manual</u> <u>instrumentation</u>.

Thank You

Hoag Orthopedic Institute