

Fracture Fixation Augmentation: Techniques and Best Materials

R. Trigg McClellan, MD

Clinical Professor Emeritus University of California San Francisco

May 24 – May 27 2023 San Francisco, Ca

rthopaedic Trauma Institute

+ SAN FRANCISCO GENERAL HOS

Disclosures

- Biologica Technologies, LLC
- Dimensional Bioceramics, LLC
- EPIX Orthopaedics

Background

Bone augmentation with biomaterials was first described in 1984

Deramond injected polymethyl methacrylate cement into a cervical vertebral body to treat a painful intravertebral haemangioma

Challenges

Advances in implant design such as locked plates Still need to promote fracture biology, augment bone defects, and improve surgical fixation in the osteoporotic patient

Ideal material

Table 1.

Characteristics of bone augmentation materials.

	Void filler	Structural	Inductive	Conductive	Osteogenic	Low morb.	Low cost	Unlimited
ATBG								
S-ALG								
NS-ALG								
DBM								
CaP								
CaS								
PMMA								

ATBG = autologus bone graft, S-ALG = Structural Allograft, NS-ALG = Non Structural Allograft, DBM = Demineralized Bone Matrix, CaP = Calcium Phosphate, CaS = Calcium Sulfate, PMMA = Polymethylmethacrylate. Dark Pink = Strongly Advantageous; Salmon = Weakly Advantageous; Light Pink = Not Advantageous.

Current treatment options for critical size bone defects

- "Gold Standard" autograft
- Allograft
- Synthetic bone graft substitutes
- Vascularized fibular graft
- Induced membrane technique
- Distraction osteogenesis

The major impediment to bone healing with current treatment options

Insufficient vascularization and incorporation of graft material

Induced membrane technique – Masquelet

- Two-stage procedure with temporary cement spacer is introduced into a bone defect and is later removed and replaced by autograft and possible allograft adjunct
- Over a period of weeks, the cement induces a <u>foreign body reaction</u> that leads to formation of a fibrous, vascular membrane around the spacer

CN

75 y/o RHD Female Parkinson's Disease

ST THOMA ST IVE ଜିନ୍ଦିଆ

) 1 HOUR PHYSICIAN TIME :08 AM TN

STI

Defect

Orthopaedic Trauma Institute UCSF + SAN FRANCISCO GENERAL HOSPITAL

4 mon po

Calcium Phosphate Cement

Endosteal implant

NS 60 y/o

CaP injection

OF COMPANY

AN, RØBERT

NS post op

BH 42 y/o

BH intra-op

BH post op

Future

Challenge remains to be the development of anatomically-shaped, bioactive, mechanically strong and tough scaffolds required for the reconstruction of load-bearing large bone defects.

Advances in the 3D Printing

 The mechanical properties of recently 3D printed bioceramic and bioglass scaffolds with ~ 50% porosity have reached those of cortical bone in terms of stiffness and strength

• However, their toughness (resistance to propagating cracks) is yet to be optimized.

Calcium Phosphate Cements

UCSF + SAN FRANCISCO GENERAL HOSPITAL

e

