Implants - Are There Any Advancements Left to Make?

focus only a few aspects...

- individualized implants
- Hybrid implants
- Smart active implants
- Reduction support
- Periprosthetic trauma care

Problem: Large articular defect too big and too complex for a auto-graft What are the options?

> large central trochlea defect

ulnar side

radial capitulum

Individualized Implants - Hybrid Implants Example: polytrauma, massive liver trauma and chest injury, packing, lung resection, DCO ... ECMO ... ICU for 6 weeks ... How can 3D print help?

- 1. 3D copy of the contralateral femur
- 2. Comparison with the fractured exfixed femur
- 3. 3D print of a proximal and distal Schanz screw connector and a reduction module
- 4. Removal of classic exfix and application of the SS connectors.
- 5. Automatic reduction by the application of the snap-in reduction module

Advantages

- +++ precise
- even outside the OR (ICU)

3D alignment analysis postop

3D printed reduction ExFix for 3D print template assisted navigation

Reduction Support by the implant

alignment modification during osteotomy healing (modified Precice nail) excentric longitudinal force lateral results in frontal plane incomplete alignment change osteotomy (valgization) =hinge medial osteotomy

alignment changing nail (modified Precice nail)

not only ...

- forward/backward
- distraction/compression

Advancements

• Torsion?

. . .

 feed back information from bone-implant complex to outside

(stiffness, degree of healing, loading capacity)

 aktive bone healing stimulating patterns

Reduction Support by the specific devices

THE INTERNATIONAL JOURNAL OF MEDICAL ROBOTICS AND COMPUTER ASSISTED SURGERY Int J Med Robotics Comput Assist Surg 2006; 2: 238–250.

Published online 3 April 2006 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/rcs.81

A surgical telemanipulator for femur shaft fracture reduction[†]

R Westphal, S Winkelbach, T Gosling, T Hufner, J Faulstich, P Martin, C Krettek, F Wahl

Reduction Support by the implant

TKA 2007

10d after implantation hinged TKA the patient feels a crack in her knee

1 month later Low energy fall, pain right knee

Additional trauma (fall from chair) 1 month after longer stem implantation

Custom made diaphyseal spacer

The only mechanically sound structure is the implant ...

Medical Engineering & Physics 36 (2014) 239-243

Technical note

Intraprosthetic screw fixation increases primary fixation stability in periprosthetic fractures of the femur—A biomechanical study

Stephan Brand^{a,*}, Johannes Klotz^b, Thomas Hassel^b, Maximilian Petri^a, Max Ettinger^c, Friedrich-Wilhelm Bach^b, Christian Krettek^a, Thomas Gösling^a

3 Trauma Department Hannover Medical School, MHH, Germany

^b Leibniz University Hannover, Institute of Materials Science, Germany

* Department of Orthopaedic Surgery, Hannover Medical School, Germany

ARTICLE INFO

ABSTRACT

Article history: Received 2 January 2013 Received in revised form 17 July 2013 Accepted 19 July 2013

Keywords: Periprosthetic fracture LISS-plate Locking-screw plating Intraprosthetic screw fixation Background: The purpose of this study was to develop a new fixation technique for the treatment of periprosthetic fractures using intraprosthetic screw fixation. The goal was to biomechanically evaluate the increase in primary fixation stability compared to unicortical locked-screw plating.

Methods: A Vancouver C periprosthetic fracture was simulated in femur prosthesis constructs. Fixation was then performed with either unicortical locked-screw plating using the LISS-plate or with intraprosthetic screw fixation. Fixation stability was compared in an axial load-to-failure model.

Results: The intraprosthetic fixation model was superior to the unicortical locked-screw fixation in all tested devices. The intraprosthetic fixation model required $11,807 \text{ N} \pm 1596 \text{ N}$ for failure and the unicortical locked-screw plating required $7649 \text{ N} \pm 653 \text{ N}$ (p = 0.002).

Conclusion: Intraprosthetic screw anchorage with a special prosthesis drill enhances the primary stability in treating periprosthetic fractures by internal fixation.

© 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

The only mechanically sound structure is the implant ...

Knochenklemmung &

Brand S et al Intraprosthetic screw fixation increases primary fixation stability in periprosthetic fractures of the femur - a biomechanical study. Medical engineering & physics. 2014;36(2):239-43.

ting & Physics 36 (2014) 239-241 Contents lists available at ScienceDirect Medical Engineering & Physics irnal homenage: www.elsevier.com

Fechnical not

Intraprosthetic screw fixation increases primary fixation stability in periprosthetic fractures of the femur-A biomechanical study

tephan Brand ***, Johannes Klotz ^b, Thomas Hassel ^b, Maximilian Petri *, Max Ettinger riedrich-Wilhelm Bach^b, Christian Krettek^a, Thomas Gösling

ABSTRACT

ARTICLE INFO

rticle history: eceived 2 January 2013

Background: The purpose of this study was to develop a new fixation techn periorosthetic fractures using intraprosthetic screw fixation. The goal was to ncrease in primary fixation stability compared to unic dethods: A Vancouver C periprosthetic fracture was simulated in femur was then performed with either unicortical locked-screw lating using the LISS-plate or with int etic screw fixation. Fixation stability was compared in an axial l suits: The intraprosthetic fixation model was superior to the up ted devices. The intraprosthetic fixation model required 11,807 N ± 1596 N for failure and the u cal locked-screw plating required 7649 N ± 653 N (p=0.002) hetic screw anchorage with a special prosthesis drill enhances t © 2013 IPEM. Published by Elsevier Ltd. All rights reserved

Prosthetic Bridging

direct drilling in prosthesis

Spreading Deformation

The only mechanically sound structure is the implant ...

Prosthesis to prosthesis

hip to knee replacement

Prosthesis to Bone

Prosthesis: Advancements left to make ...

prostheses shoud have standardized connector options

- extramedullary fixation
- intramedullary fixation

would require legislation to implement ...

Prosthesis: Advancements left to make ...

... like EU did with mandatory USB-C connector by 2024

end of 2024

Summary Advancements Left to Make ...

- individualized implants / Hybrid implants
- Smart active implants
- Reduction support
- Periprosthetic trauma care

Case 3, Hildegard F, *

- 87 year old female
- TKA 2001 right side
- THA 2003 after femoral neck fracture right side
- Low energy fall
- Pain right leg

Hildegard F, *

after minor fall 2 month later

Intraop dead avital bone ... 12 cm resection and spacer implantation ...

Study design:

- 1. Establishment of a model of robot-assisted repositioning of femoral fractures in rats
 - Construction of a fixateur externe
 - Creation of a control program for the robot
- 2. Analysis of plasma cytokine concentrations: Short vs. prolonged repositioning maneuver
- 3. Analysis of muscle biopsies to find pathological changes
- 4. Analysis of non-decalcified bone slices
- 1. μ CT and biomechanical analysis

Implantation of Fixateur extern:

Implantation of Fixateur extern:

Repositiong maneuver:

Dislocation:

←→ 2mm

10 mm up and down

Sham:-Short repositioning:1x timeProlonged repositioning:10x times

Repositiong maneuver:

