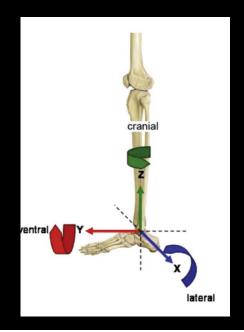
Syndesmotic Fixation: Suture button or Screws

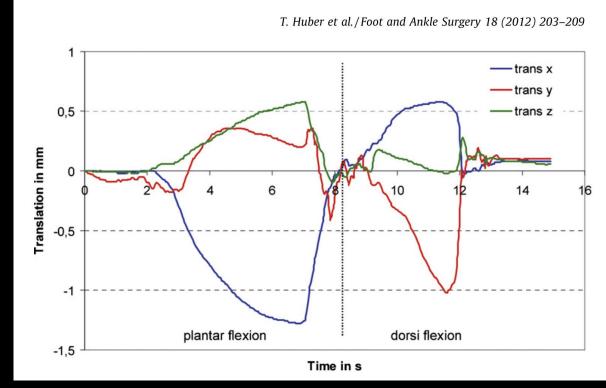
David Shearer, MD, MPH
Associate Professor
Dept. of Orthopaedic Surgery
University of California, San Francisco

Case 1: 27yo F fall on stairs

Case 2: 42yo obese M MCC

Syndesmosis controversies

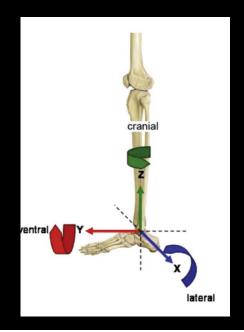

- Reduction
 - Technique
 - Open vs radiographic assessment
- Fixation
 - Number of screws
 - Size of screws
 - Tricortical vs quadricortical

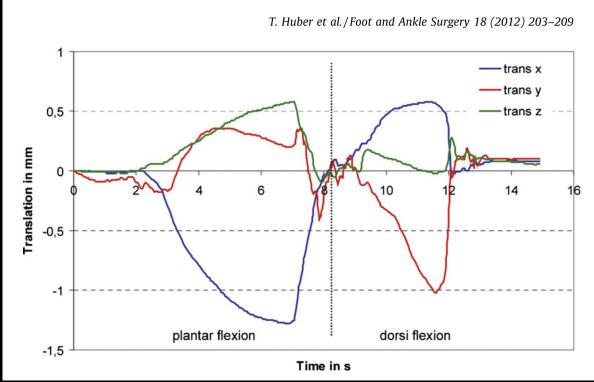

Syndesmosis controversies

- Reduction
 - Technique
 - Open vs radiographic assessment
- Fixation
 - Number of screws
 - Size of screws
 - Tricortical vs quadricortical
 - Screws vs Suture Button

Problems with screws

Rigid fixation of a mobile articulation



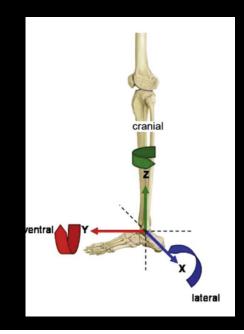

Problems with screws

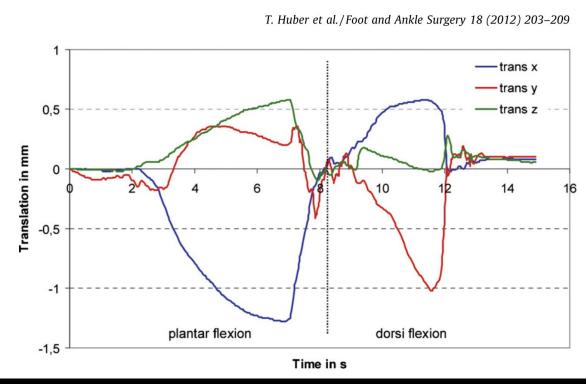
Rigid fixation of a mobile articulation

→ Definitely

- Higher risk of loosening or breakage
- Need for implant removal

Problems with screws


Rigid fixation of a mobile articulation


→ Definitely

- Higher risk of loosening or breakage
- Need for implant removal

→ Probably

Worse ankle function

AO ORTHOPAEDIC FOOT & ANKLE SOCIETY*

Nikolai Ramadanov, MD^{1,2}, Simon Bueschges³, and Dobromir Dimitrov, Prof. MD⁴

Foot & Ankle Orthopaedics 2021, Vol. 6(4) 1–14 © The Author(s) 2021 I: 10.1177/24730114211061405 journals.sagepub.com/home/fao

- Meta-analysis
- 8 RCTs suture button vs screws

Implant failure							
	Suture B	utton	S	Screw		Odds Ratio	Odds Ratio
Study	Events	Total	Events	Total	Weight	MH, Random, 95% (CI MH, Random, 95% CI
Coetzee and Ebeling 2009	0	12	0	12	0.0%		
Colcuc et al. 2018	0	26	2	28	18.8%	0.20 [0.01; 4.37]	_
Kortekangas et al. 2015	0	21	16	22	20.5%	0.01 [0.00; 0.17]	←
Laflamme et al. 2015	0	34	14	36	21.7%	0.02 [0.00; 0.40]	
Raeder et al. 2020	0	55	2	58	19.1%	0.20 [0.01; 4.34]	- 1
Raeder et al. 2020 ²	0	48	3	49	20.0%	0.14 [0.01; 2.72]	
Total (95% CI)		196		205	100.0%	0.06 [0.02; 0.23]	<u> </u>
Prediction interval						[0.01; 0.54]	
Heterogeneity: $Tau^2 = 0$; $Chi^2 = 3.59$, $df = 4$ (P = 0.46); $I^2 = 0\%$						1 1 1 1 1 1	
Test for overall effect: Z = -4.09 (P < 0.01)					(0.0010.01 0.1 1 10 100 1000	
						Favou	urs Suture Button Favours Screw

Nikolai Ramadanov, MD^{1,2}, Simon Bueschges³, and Dobromir Dimitrov, Prof. MD⁴

- Foot & Ankle Orthopaedics 2021, Vol. 6(4) 1–14 © The Author(s) 2021 I: 10.1177/24730114211061405 journals.sagepub.com/home/fao
- Meta-analysis
- 8 RCTs suture button vs screws

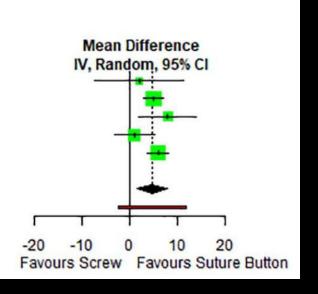
Implant failure

Reoperation

	Suture B	Button	5	crew		Odds Ratio	Odds Ratio
Study	Events	Total	Events	Total	Weight	MH, Random, 95% CI	MH, Random, 95% CI
Coetzee and Ebeling 2009	1	12	1	12	5.3%	1.00 [0.06; 18.08]	
Colcuc et al. 2018	1	26	1	28	5.6%	1.08 [0.06; 18.20]	- : +
Giza et al. 2019	1	32	2	33	7.4%	0.50 [0.04; 5.80]	
Kortekangas et al. 2015	1	21	3	22	8.0%	0.32 [0.03; 3.32]	
Laflamme et al. 2015	2	34	12	36	17.6%	0.13 [0.03; 0.61]	-= ;
Raeder et al. 2020	10	55	17	58	56.2%	0.54 [0.22; 1.30]	-
Total (95% CI) Prediction interval		180		189	100.0%	0.43 [0.22; 0.83] [0.17; 1.09]	<u> </u>
Heterogeneity: Tau2 = 0; Chi2 =	= 3.41, df	= 5 (P :	= 0.64); 12	= 0%			
Test for overall effect: $Z = -2$.						0.	0010.01 0.1 1 10 100 1000
						Favour	rs Suture Button Favours Screw

Nikolai Ramadanov, MD^{1,2}, Simon Bueschges³, and Dobromir Dimitrov, Prof. MD⁴

- Foot & Ankle Orthopaedics 2021, Vol. 6(4) 1–14 © The Author(s) 2021 I: 10.1177/24730114211061405 journals.sagepub.com/home/fao
- Meta-analysis
- 8 RCTs suture button vs screws


Implant failure

Reoperation

AOFAS < 6 months postoperatively

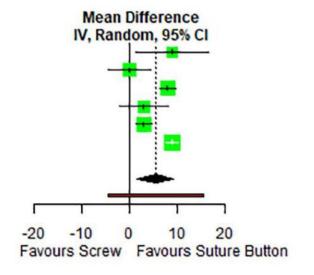
Test for overall effect: t4 = 4.30 (P = 0.01)

	Suture	Button			Screw			Mean Difference
Study	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI
Colcuc et al. 2018	73.00	20.00	26	71.00	15.00	28	5.9%	2.00 [-7.49; 11.49]
Giza et al. 2019	63.00	2.00	32	58.00	6.00	33	31.8%	5.00 [2.84; 7.16]
Laflamme et al. 2015	79.00	11.00	34	71.00	15.00	36	11.8%	8.00 [1.86; 14.14]
Raeder et al. 2020	67.00	10.00	55	66.00	13.00	58	18.8%	1.00 [-3.26; 5.26]
Raeder et al. 2020 ²	64.00	6.00	48	58.00	5.00	49	31.6%	6.00 [3.80; 8.20]
Total (95% CI)			195			204	100.0%	4.74 [1.68; 7.80]
Prediction interval								[-2.44; 11.92]
Heterogeneity: Tau ² = 3.	8735; CI	ni ² = 5.4	7, df =	4 (P = 0	.24); 12:	= 27%		

Nikolai Ramadanov, MD^{1,2}, Simon Bueschges³, and Dobromir Dimitrov, Prof. MD⁴

- Foot & Ankle Orthopaedics 2021, Vol. 6(4) 1–14 © The Author(s) 2021 I: 10.1177/24730114211061405 journals.sagepub.com/home/fao
- Meta-analysis
- 8 RCTs suture button vs screws

Implant failure


Reoperation

AOFAS < 6 months postoperatively

AOFAS 12 months postoperatively

Test for overall effect: $t_s = 3.55$ (P = 0.02)

S	uture B	utton			Screw			Mean Difference
Study	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI
Coetzee and Ebeling 2009	9 85.00	9.00	12	76.00	10.00	12	9.2%	9.00 [1.39; 16.61]
Colcuc et al. 2018	91.00	9.00	26	91.00	8.00	28	14.8%	0.00 [-4.56; 4.56]
Giza et al. 2019	98.00	3.00	32	90.00	4.00	33	20.7%	8.00 [6.28; 9.72]
Laflamme et al. 2015	93.00	9.00	34	90.00	13.00	36	13.4%	3.00 [-2.21; 8.21]
Raeder et al. 2020	93.00	5.00	55	90.00	4.00	58	20.8%	3.00 [1.32; 4.68]
Raeder et al. 2020 ²	96.00	3.00	48	87.00	4.00	49	21.2%	9.00 [7.59; 10.41]
Total (95% CI)			207			216	100.0%	5.42 [1.50; 9.33]
Prediction interval Heterogeneity: Tau ² = 10.781	1. Chi ² = .	41 70	df = 5	(D < 0.0	1): 12 = 8	2294		[-4.63; 15.47]

Why no suture button?

Older, lower demand

• Diabetic/Obese/Non-compliant with fracture-dislocation

Length unstable fibula without fixation (Maissoneuve)

Higher Cost implant (?)

Suture Button Fixation Versus Syndesmotic Screws in Supination– External Rotation Type 4 Injuries

A Cost-Effectiveness Analysis

The American Journal of Sports Medicine, Vol. 45, No. 1 DOI: 10.1177/0363546516664713 © 2016 The Author(s)

Kaitlin C. Neary,*† MD, Matthew A. Mormino,† MD, and Hongmei Wang,† PhD Investigation performed at the University of Nebraska Medical Center, Omaha, Nebraska, USA

Main assumptions

	Screw	Suture Button
Cost	\$62	\$880
Hardware removal	20%	4%

Suture Button Fixation Versus Syndesmotic Screws in Supination– External Rotation Type 4 Injuries

A Cost-Effectiveness Analysis

The American Journal of Sports Medicine, Vol. 45, No. 1 DOI: 10.1177/0363546516664713

© 2016 The Author(s)

Kaitlin C. Neary,*† MD, Matthew A. Mormino,† MD, and Hongmei Wang,† PhD Investigation performed at the University of Nebraska Medical Center, Omaha, Nebraska, USA

Main assumptions

Screw Suture Button
Cost \$62 \$880
Hardware removal 20% 4%

TABLE 4
Comparison of Cost, Effectiveness, and Dollars per QALY for Each Treatment Scenario^a

	One TightRope	Two TightRopes	One 3.5-mm Screw	Two 3.5-mm Screws
Total cost, US\$ Total effectiveness	19,354 5.874	20,235 5.874	20,803 5.816	20,836 5.816
\$/QALY	3294	3445	3576	3583

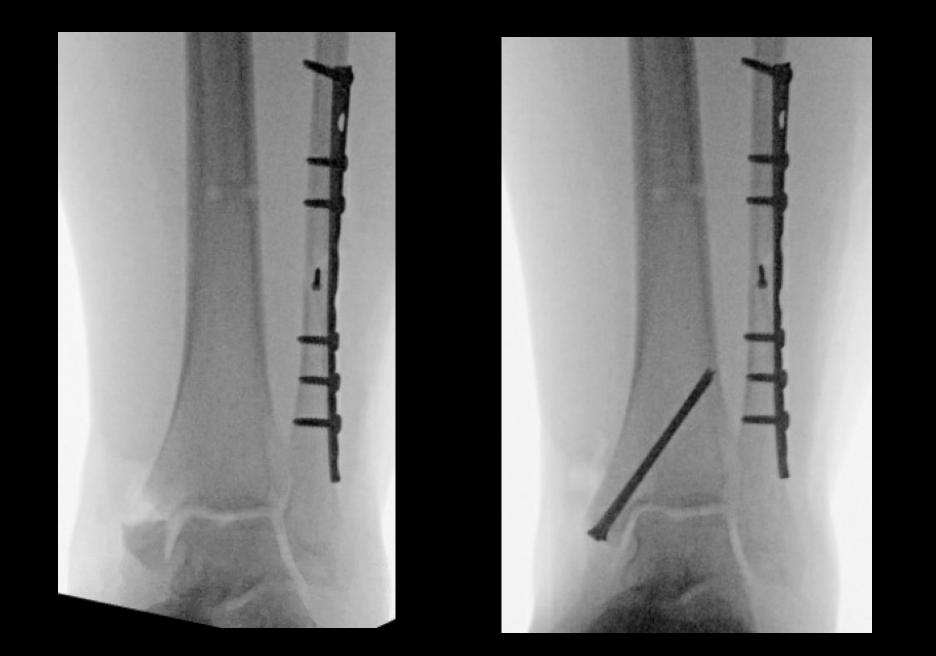
Suture Button Fixation Versus Syndesmotic Screws in Supination– External Rotation Type 4 Injuries

A Cost-Effectiveness Analysis

The American Journal of Sports Medicine, Vol. 45, No. 1 DOI: 10.1177/0363546516664713 © 2016 The Author(s)

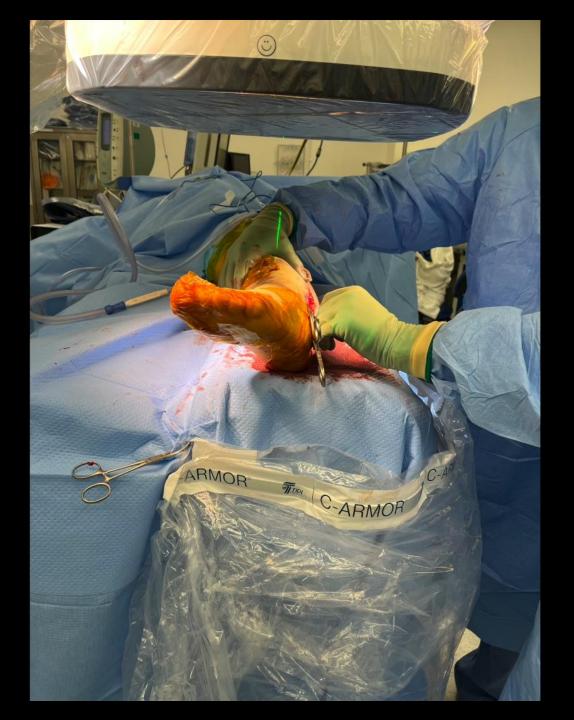
Kaitlin C. Neary,*† MD, Matthew A. Mormino,† MD, and Hongmei Wang,† PhD Investigation performed at the University of Nebraska Medical Center, Omaha, Nebraska, USA

Main assumptions


	Screw	Suture Button
Cost	\$62	\$880
Hardware removal	20%	4%

Suture button less costly, but more effective

Case 1: 27yo F fall on stairs



Case 2: 42yo obese M MCC

Reduction Sequence

- "Thumb reduction"
- Smooth "glide wire"
- Apply clamp only if needed
- Insert fixation

Assess reduction

- Open
- Radiographic vs contralateral

Take-home messages

Suture buttons likely superior to screw fixation

- BUT screws preferred if
 - Older, low demand
 - Fracture-dislocations in high-risk patients
 - Length unstable fibula
- Flexible fixation technically straightforward

Thank you!