Young Adult Hip Femoral Neck Fractures

Disclosures!

Publications

- Wolters Kluwer Royalties; AAOS; OKU Trauma, ICL Trauma, Tornetta; Op Techn in Ortho Surg, OTA Curriculum, AAOS ROCK
- Journals:; JOT; Specialty editor, CORR, JAAOS, JBJS; Reviewer

Research:

- NIH, OTA, FOT, OREF, DOD
- Consultant / Designer
 - Smith and Nephew,
- Boards / Officer:
 - AAO

Different Than Elderly

Lots of Issues

- Type of fracture
 - Subcap vs basicervical
 - Anatomy of fx line
- Timing of fixation
- Patient and injury factors
- Surgeon controlled factors

Timing vs AVN?

- Unclear!
 - Vascular injury
 - Disruption
 - Kinking (traction might help)
 - Undisplaced
 - Maybe some pressure issues (unlikely)
 - FAITH: SHS 9%; CS 5% (p=0.03)

The relationship between femoral neck fracture in adult and avascular necrosis and nonunion: A retrospective study

Saeed Koaban, Raheef Alatassi*, Salman Alharbi, Mansour Alshehri, Khalid Alghamdi

Time of fixation			0.011
Within 24 h	16 (28.1)	8 (66.7)	
After 24 h	41 (71.9)	4 (33.3)	

Until Recently Not Much

Haidukewych GJ, Rothwell WS, Jacofsky DJ, Torchia ME, Berry DJ. Operative treatment of femoral neck fractures in patients between the ages of fifteen and fifty years. JBJS. 2004 Aug 1;86(8):1711-6.

Lindequist & Tornkvist. Quality of reduction and cortical screw support in femoral neck fractures. An analysis of 72 fractures with a new computerized measuring method. J Orthop Trauma. 1995 Jun;9(3):215-21.

Booth KC, Donaldson TK, Dai QG. Femoral neck fracture fixation: a biomechanical study of two cannulated screw placement techniques. Orthopedics. 1998 Nov 1;21(11):1173-6.

Results of Internal Fixation of Pauwels Type-3 Vertical Femoral Neck Fractures

Liporace, Frank MD¹; Gaines, Robert MD²; Collinge, Cory MD³; Haidukewych, George J MD²

76 Fractures

• AVN: 11%

- Nonunion
 - Screws: 19%
 - Fixed angle: 8%

Best Overall Data

Treatment Failure in Femoral Neck Fractures in Adults Less Than 50 Years of Age: Analysis of 492 Patients Repaired at 26 North American Trauma Centers

Cory A. Collinge, MD,^a Andrea Finlay, PhD,^b Andres Rodriguez-Buitrago, MD,^c Michael J. Beltran, MD,^d Phillip M. Mitchell, MD,^c Hassan R. Mir, MD, MBA,^e Michael J. Gardner, MD,^f Michael T. Archdeacon, MD,^d and Paul Tornetta III, MD^g on behalf of the Young Femoral Neck Working Group

- 377 Displaced
- 52% Complication rate!

Patient & Injury

- Pauwels angle
- Displacement
- Comminution
- Age
- Male sex
- Metabolic bone
- Alcohol use

Most Important

- Reduction
- OR 5.3!!!

Managing Femoral Neck Fractures in Adults Less than 50 years of Age: Effects of Technical Errors on Outcomes in a Large, Multicenter Population

<u>Cory Collinge</u>¹; <u>Payton Harris</u>¹, Andres Rodriguez-Buitrago², Michael J Beltran³, Hassan Mir⁴, Michael Gardner⁵, Michael Archdeacon⁶, Patton Robinette⁷, David O'Neill⁸, Paul Tornetta III⁹, Andrew Sems¹⁰, Kyle Jeray¹¹, John Ketz¹², Chad Coles¹³, John Scolaro¹⁴; Brett Crist¹⁵; Patrick Bergin¹⁶; Jaimo Ahn¹⁷; Joseph Hsu¹⁸; Andrew Schmidt¹⁹; Nirmal Tejwani²⁰; Walter Virkus²¹; Timothy Weber²²; Brian Mullis²³; Frank Liporace²⁴; Frank Avilucea²⁵; Daniel Horwitz²⁶; Robert Hymes²⁷, Lisa Cannada²⁸, and other members of the Young Femoral Neck Working Group.

Technique Matters

"Technical error" defined as:

- Malreduction: Fair/poor
- Fixation:
 - 1. Fixed angle device: TAD >25mm
 - 2. Cannulated screw: >3mm from calcar cortex
 - 3. Cannulated screws: >10mm from joint
 - 4. Cannulated screws: <1cm separated

Errors Happen

Variables	إا	Repairs without	Repairs with	P-value
		Technical Error(s)	Technical Error(s)	
Number of patients	492	247	245	NA
Mean Age, years (SD)	36.8 ±8.8	38.1± 8.7	36.2± 8.8	0.040
Gender (% female)	172 (35%)	64 (25.9%)	108 (44.0%)	0.002
dender (70 remaie)	172 (5575)	0.1 (20.5%)	200 (111070)	0.002
Mean Body Mass Index	27.2 ±6.9	27.1±7.5	27.2± 6.6	0.980
	-	400 (40 00)	400 (54 40)	0.050
Patients with medical problems associated with bone metabolism*	211	103 (48.8%)	108 (51.1%)	0.950
Mean Pauwels' angle	53.2 ±11.4	51.8± 14.0	54.1± 13.5	0.020
iviean rauweis angle	55.2 ±11.4	31.6± 14.0	54.11 15.5	0.020
Displacement (Modified Garden)				
 Non-displaced 	115	70 (60.9%)	45 (39.1%)	0.005
Displaced	377	173 (45.9%)	204 (53.1%)	
Pauwels' classification for				
displaced fractures (n=377)	_	4 (57 40)	0 (40 004)	204
• Type I (<30°)	7	4 (57.1%)	3 (42.9%)	< .001
• Type II (30°-50°)	124	36 (27.8%)	88 (71.0%)	
● Type III (>50°)	246	38 (15.4%)	208 (84.6%)	
Fixation construct				
 Multiple cannulated screws 	287	102 (35.5%)	185 (64.5%)	<0.001
 Fixed angled device 	205	145 (70.7%)	60 (29.2%)	

Relationship of technical errors with complications in all fracture, and non-displaced and displaced fractures

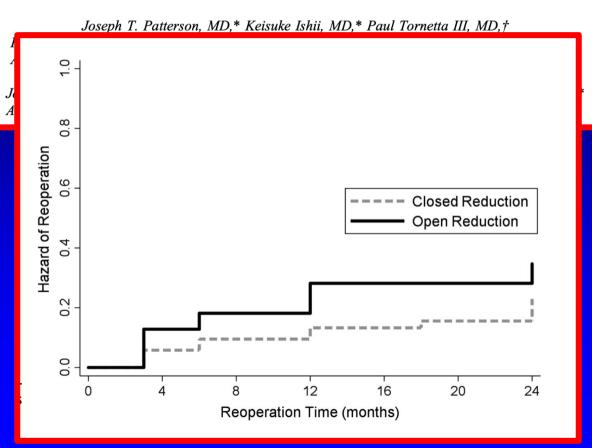
	All fractures (492)			Non-displaced Fractures (115)			Displaced Fractures (377)		
Treatment outcomes	Repairs without TE(s)(247)	Repairs with TE(s) (245)	P-value	Repairs without TE(s) (70)	Repairs with TE(s) (45)	P-value	Repairs without TE(s) (177)	Repairs with TE(s) (200)	P-value
Repairs with major complications and/or major reconstructive surgery	54 (21.9%)	135 (55.1%)	<0.001	8 (11.4%)	10 (22.2%)	0.099	46 (26.1%)	125 (62.2%)	<0.001
Nonunion and/or failed fixation	23 (9.3%)	88 (35.9%%)	<0.001	3 (4.3%)	4 (8.9%)	0.267	20 (11.3%)	84 (41.8%)	<0.001
Osteonecrosis (Stages 2b-4)	26 (10.5%%)	33 (13.5%%)	0.172	5 (7.1%)	4 (8.9%)	0.497	21 (11.9%)	29 (14.4%)	0.381
Malunion	4 (1.6%)	7 (2.8%)	0.238	0 (0)	1 (2.2%)	0.391	4 (2.3%)	6 (3.0%)	0.470
Required major reconstructive surgery	39 (15.8%)	100 (40.8%)	<0.001	6 (8.6%)	9 (20.0%)	0.048	33 (18.8%)	91 (45.3%)	<0.001

- Complications
- Nonunion
- Major Surgery

	N	Success	Failure	P value
No Errors	177	73.4%	26.6%	
Error (s)	200	38%	62%	
1 Error	163	59.9%	40.1%	<001
2 Errors	32	20.5%	79.5%	
3 Errors	5	9.1%	90.1%	

	N	Success	Failure	P value
No Errors	177	73.4%	26.6%	
Error (s)	200	38%	62%	
1 Error	163	59.9%	40.1%	<001
2 Errors	32	20.5%	79.5%	
3 Errors	5	9.1%	90.1%	

	N	Success	Failure	P value
No Errors	177	73.4%	26.6%	
Error (s)	200	38%	62%	
1 Error	163	59.9%	40.1%	<001
2 Errors	32	20.5%	79.5%	
3 Errors	5	9.1%	90.1%	

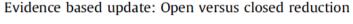

	N	Success	Failure	P value
No Errors	177	73.4%	26.6%	
Error (s)	200	38%	62%	
1 Error	163	59.9%	40.1%	<001
2 Errors	32	20.5%	79.5%	
3 Errors	5	9.1%	90.1%	

	N	Success	Failure	P value
No Errors	177	73.4%	26.6%	
Error (s)	200	38%	62%	
1 Error	163	59.9%	40.1%	<001
2 Errors	32	20.5%	79.5%	
3 Errors	5	9.1%	90.1%	

How to Do Better?

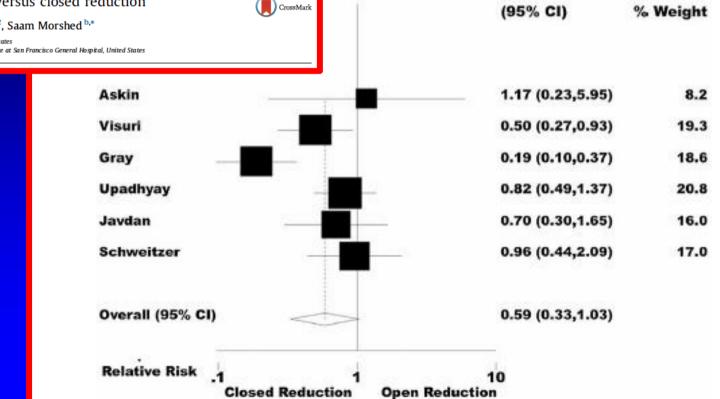
- Open reduction?
- Fixation type?

Open Reduction Is Associated With Greater Hazard of Early Reoperation After Internal Fixation of Displaced Femoral Neck Fractures in Adults 18–65 Years



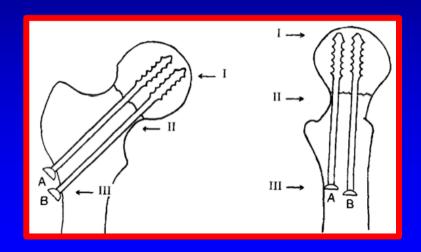
Contents lists available at ScienceDirect

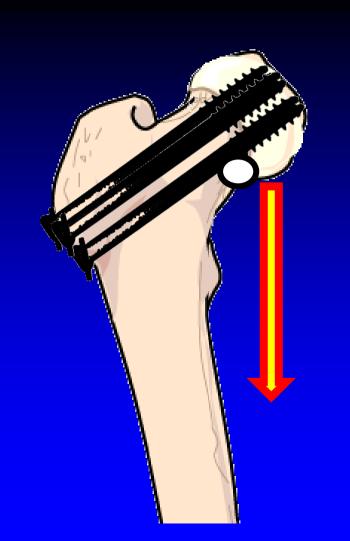
Injury

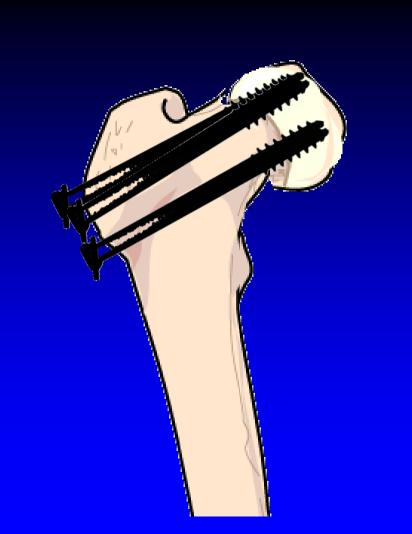

journal homepage: www.elsevier.com/locate/injury

Pouriya Ghayoumi ^{a,1}, Utku Kandemir ^{b,2}, Saam Morshed ^{b,*}

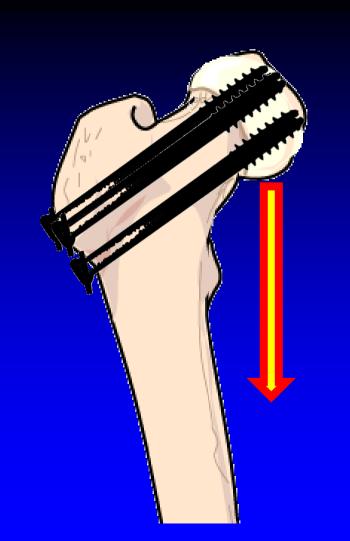
- a University of California, San Francisco School of Medicine, United States
- ^b University of California, San Francisco, Orthopaedic Trauma Institute at San Francisco General Hospital, United States

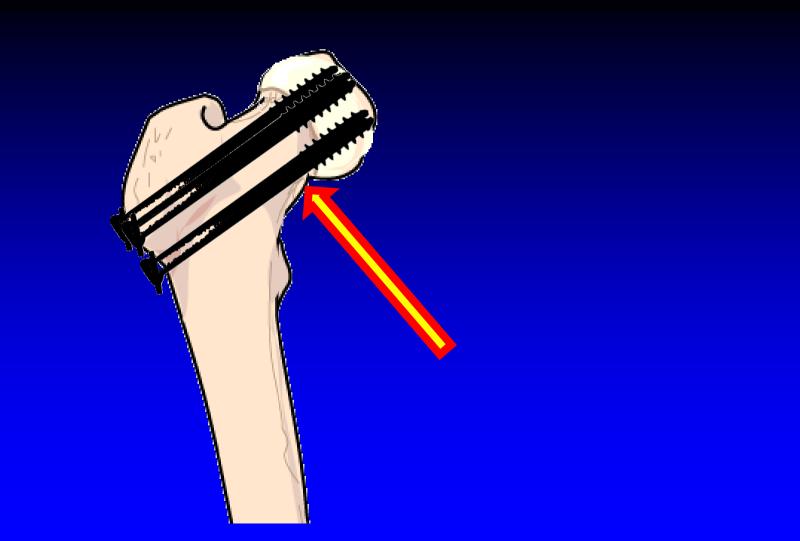

Risk ratio

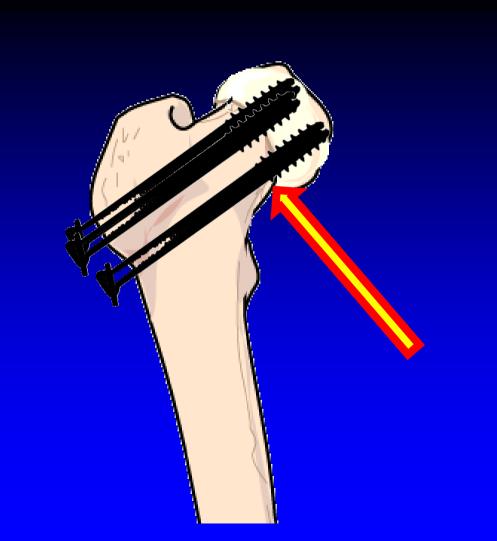

Fixation Device

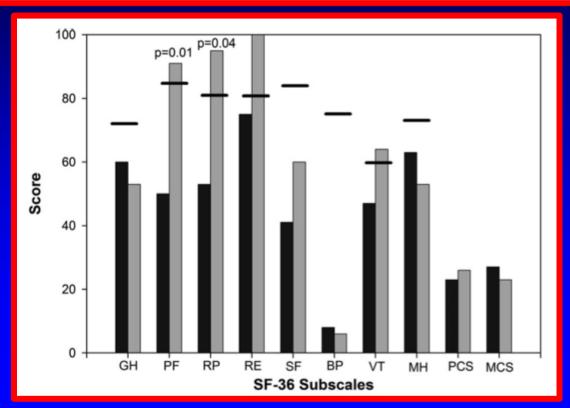

- If CS
 - Butress properly
 - Success < 5mm</p>
- If SHS of FNS
 - TAD

Percutaneous cannulated screw fixation of femoral neck fractures: the three point principle


C. A. Bout, D. M. Cannegieter and J. W. Juttmann Ziekenhuis Hilversum, Hilversum, The Netherlands

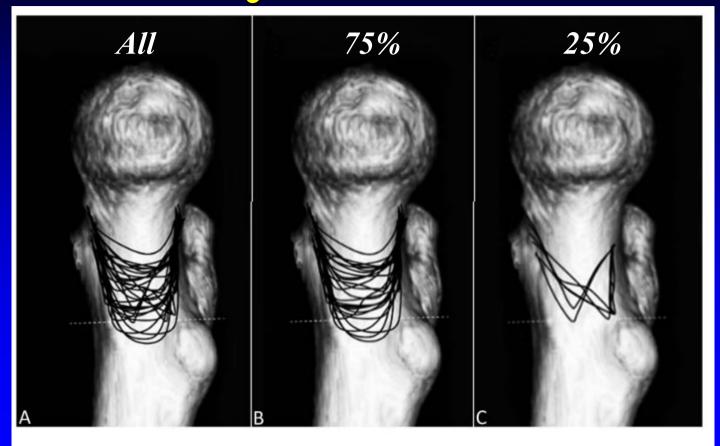






Femoral Neck Shortening After Fracture Fixation With Multiple Cancellous Screws: Incidence and Effect on Function

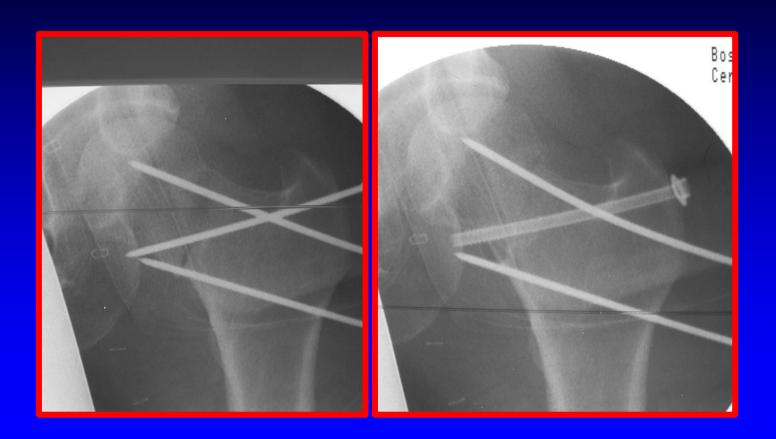

Michael Zlowodzki, MD, Olufemi Ayieni, MD, Brad A. Petrisor, MD, and Mohit Bhandari, MD, MSc,


Anatomy of the Fracture

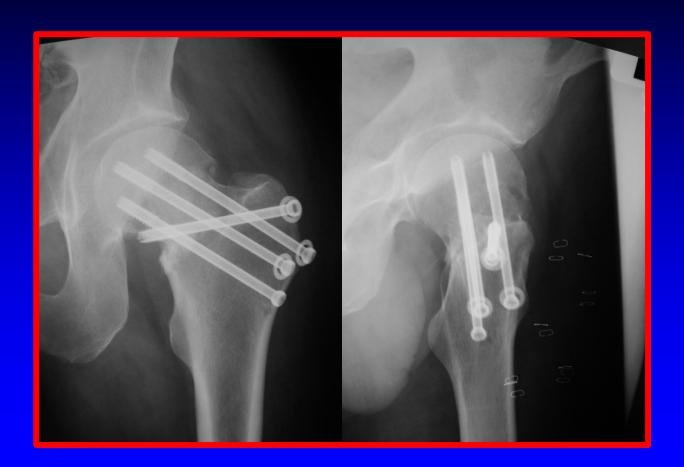
Mapping of Vertical Femoral Neck Fractures in Young Patients Using Advanced 2 and 3-Dimensional Computed Tomography

Shumaila Sarfani, MD,^a Michael J. Beltran, MD,^b Michael Benvenuti, MD,^a and Cory A. Collinge, MD^c

Anatomy of the Fracture



Prevent Shear



Weber Screw

Healed

Factors Associated With Early Failure of The Femoral Neck System (FNS) in Patients With Femoral Neck Fractures

- 62 Patients
- 16% Failure rate
- All <65 yo

Shortening, cutouts, nonunions

Neck of femur fractures treated with the femoral neck system: outcomes of one hundred and two patients and literature review

Peter

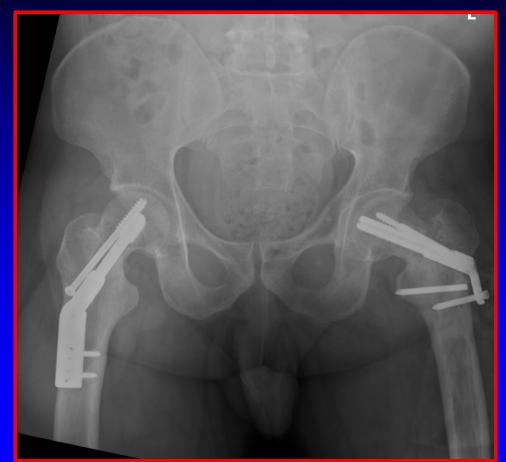
Amit Davidson^{1,3} · Shlomo Blum³ · Flad Harats³ · Frick Kachko⁴ · Ahmad Essa⁴ · Ram Efraty⁴ · Amos Peyser³ ·

Femoral neck system versus cannulated screws for fixation of femoral neck fracture in young adults: a systematic review and meta-analysis

Yao Lu^{1*}, Zhilong Huang^{2*}, Yibo Xu^{1*}, Qiang Huang¹, Cheng Ren¹, Ming Li¹, Zhong Li¹, Liang Sun¹, Hanzhong Xue¹, Kun Zhang¹, Qian Wang¹, Teng Ma¹

Not impressive

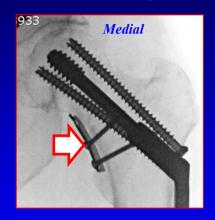
Less shortening



Still all about the technical surgery

We Tried It..

We Tried It..



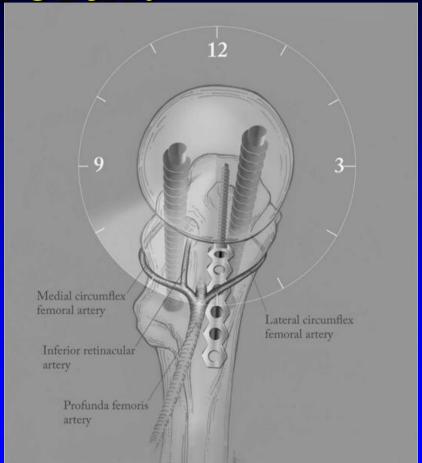
We Tried It..

Buttress Plating

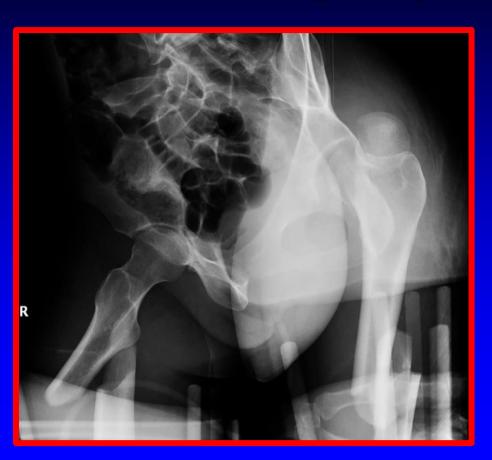
"MNPA" plate location affects failure.

2/22 4%

7/21 33%



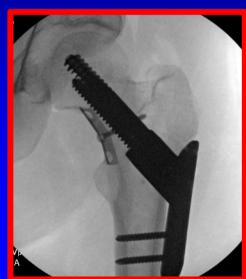
6/8 75%


P=0.003

Be Careful!

Worse Injury

Surgical Dislocation



Summary

- Timing
 - When YOU are at your best (traction)
- Technique trumps all
 - Reduction is the #1 key (open if needed)
 - Fixed angle helps
 - SHS, CS (calcar), medial antiglide plates
 - Do what you do best, but get the reduction!

