UCsF Health Non-Operative Interventions for Arthritis and Painful Total Joint Arthroplasty

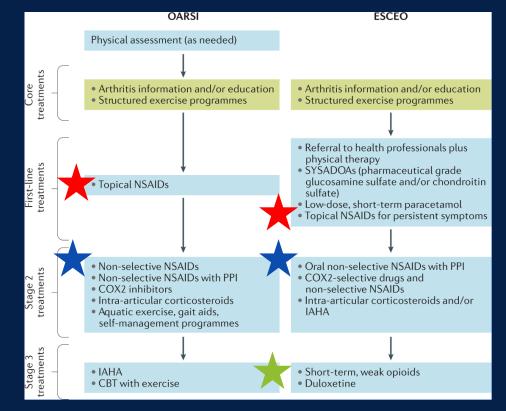
UCSF Arthroplasty for the Modern Surgeon

Lyndly Tamura, MD September 16, 2022

None

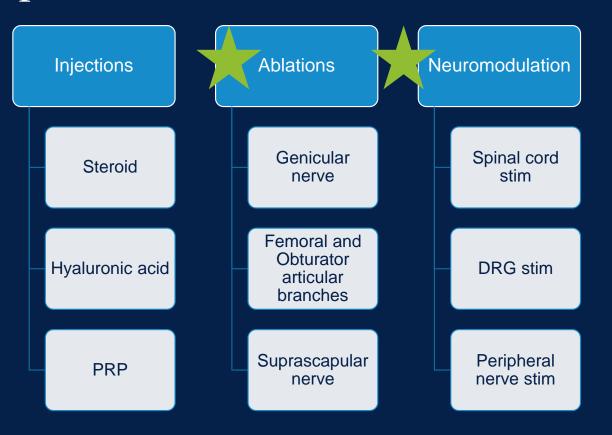
Disclaimer

Residency: PM&R at Stanford University Fellowship: Interventional Pain at Hudson Medical (NY) Current Position: UCSF-MarinHealth Non-Op Spine Doc


Medication Management

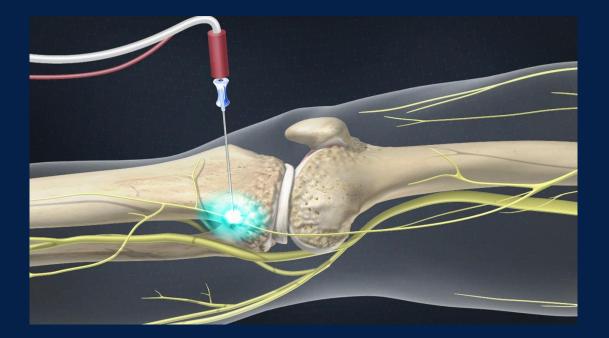
Perspective Published: 28 October 2020

Non-surgical management of knee osteoarthritis: comparison of ESCEO and OARSI 2019 guidelines


Nigel K. Arden, Thomas A. Perry ⊠, Raveendhara R. Bannuru, Olivier Bruyère, Cyrus Cooper, Ida K. Haugen, Marc C. Hochberg, Timothy E. McAlindon, Ali Mobasheri & Jean-Yves Reginster

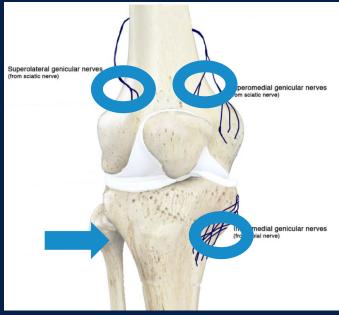
Nature Reviews Rheumatology 17, 59–66(2021) Cite this article

Non-Operative Procedures for Arthritis



NERVE ABLATIONS

Genicular Nerve Radiofrequency Ablation



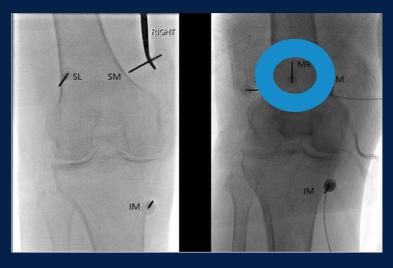
Genicular Nerve Anatomy

Genicular nerves = sensory articular branches off various nerves

Superolateral and superomedial genicular nerves: respective concave transitions of the femoral metadiaphysis and femoral condyles

Inferomedial genicular nerve: concave transition between the tibial plateau and adjacent metadiaphyseal shaft

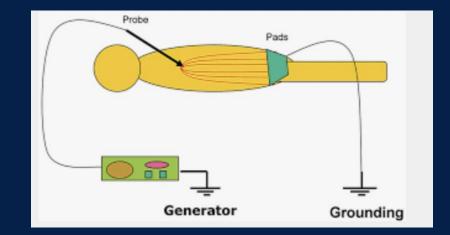
UC_{SF} Health


Gonzales et al. *Techniques in Vascular and Interventional Radiology.* 2020 Choi et al. *Korean J Pain.* 2016

Genicular Nerve Block

Procedure details for genicular nerve block

Choi et al. Korean J Pain. 2016



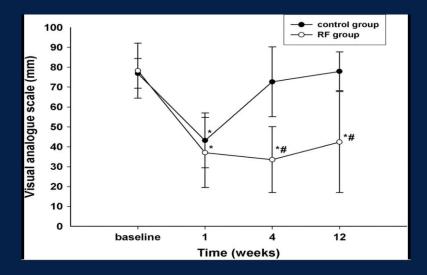
Medial retinacular branch (optional fourth site): midline anterior distal femoral diaphysis 3 cm cephalad to the superior aspect of the patella

Genicular Nerve Radiofrequency Ablation Procedure details for genicular nerve RFA

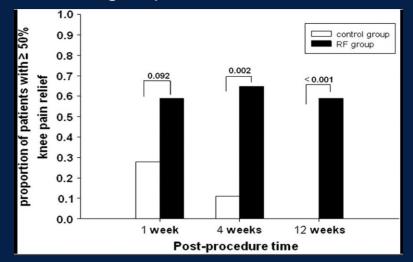
First RCT for Genicular Nerve RFA

Radiofrequency treatment relieves chronic knee osteoarthritis pain: A double-blind randomized controlled trial

Choi, Woo-Jong^a; Hwang, Seung-Jun^b; Song, Jun-Gol^a; Leem, Jeong-Gil^a; Kang, Yong-Up^c; Park, Pyong-Hwan^a; Shin, Jin-Woo^{a,*} **Author Information** ⊗


```
Pain: March 2011 - Volume 152 - Issue 3 - p 481-487
doi: 10.1016/j.pain.2010.09.029
```

Inclusion criteria: 38 patients with a) severe knee OA pain > 3 months, b) + response to genicular nerve block, c) no response to conservative measures


Methods: treatment group (n = 19) had fluoroscopy-guided genicular RFA. control group (n = 19) had fluoroscopy-guided needle placement without ablation

Choi et al.

VAS Score: significant decrease in VAS scores compared to sham at 4 and 12 weeks in the RFA group (p<0.001) Proportion achieving > 50% pain relief: 10 participants (59%) achieved this at 12 weeks in RFA group. Sham = 0

Choi et al. Secondary Outcomes and Adverse Events

The RFA group's Oxford Knee Scores were better than control group scores at 4 and 12 weeks (p < 0.001)

The RFA group's satisfaction was better than the control group satisfaction at 4 and 12 weeks (p < 0.001)

There were no adverse events reported

Evidence of Genicular RFA for Knee OA

Musculoskeletal Rehabilitation (B Schneider, Section Editor) Published: 14 September 2019

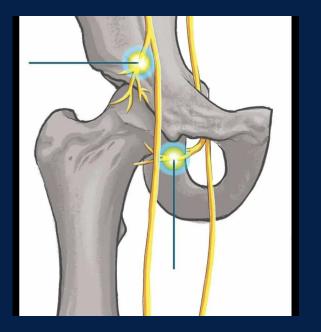
The Effectiveness and Safety of Genicular Nerve Radiofrequency Ablation for the Treatment of Recalcitrant Knee Pain Due to Osteoarthritis: a Comprehensive Literature Review

Quinn Tate , Aaron Conger, Taylor Burnham, Daniel M. Cushman, Richard Kendall, Byron Schneider & Zachary L. McCormick

Current Physical Medicine and Rehabilitation Reports 7, 404–413 (2019) Cite this article

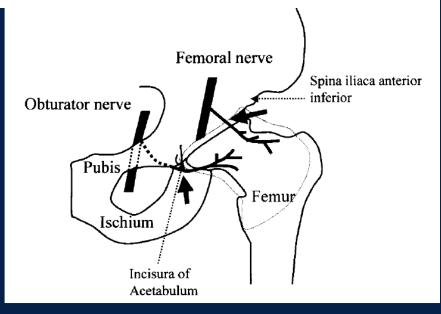
- Eight articles (including six RCTs) included
- Primary outcome: pain reduction > 50%
- Secondary outcome: validated functional assessments and avoidance of TKA

Tate, 2019 (RCTs)


Author/year	Study question	Outcomes	Complications
Sari, 2018	RFA vs IA steroid	RFA treatment of pain exceeded MCID in VAS + WOMAC	None
Choi, 2011	RFA vs sham	> 50% improvement in pain at 12 weeks for 59% of patients	None
Davis, 2018	RFA vs IA steroid	> 50% improvement in pain at 6 months for 74% of patients	None
McCormick, 2018	RFA vs RFA w/ prior block	> 50% improvement in pain at 6 months for 74% of patients	None
El-Hakeim, 2018	RFA vs NSAIDs	RFA treatment of pain exceeded MCID in VAS + WOMAC	None
Jadon, 2018	RFA: bipolar vs monopolar	RFA treatment of pain exceeded MCID in OKSS	None

Tate, 20	19	
Results		
of tiu genicula demonstrated	"genicular RFA provides an effective treatment option for patients with recalcitrant chronic knee pain secondary to OA with up to 74% of patients experiencing greater than 50% pain relief at 6 months?	n case ہو۔ ve noted pes
in resp-	ree	skin burns

Hip Joint Radiofrequency Ablation



Sensory Inputs Responsible for Hip Pain

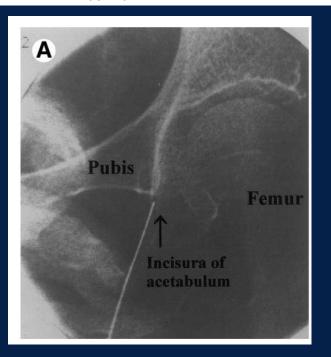
Reg Anesth Pain Med. 2001 Nov-Dec;26(6):576-81.

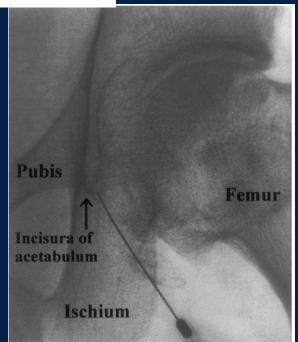
Percutaneous radiofrequency lesioning of sensory branches of the obturator and femoral nerves for the treatment of hip joint pain.

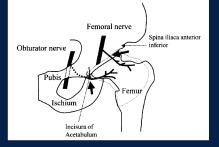
Kawaguchi, 2001

	Agol			*	VAS S	cores		Duratio Effective		
Cases	Age/ Sex	Disease	Pain	Treatments	Before	After	Outcome	(mo	Operation	
1	62/F	Osteoarthritis	rt-groin	0	6.5	1.8	Effective	6	Rejected	
2	74/F	Osteoarthritis	rt-groin	0	6.2	2.2	Effective	3	Rejected	
			rt-trochanteric	F	6.2	2.5	Effective	3	-	
3	71/F	Osteoarthritis	bil-groin	0	7.2	3.5	Effective	2	Rejected	
4	85/F	Osteoarthritis	bil-groin	0	6.5	4.5	Ineffective		Rejected	
5	74/M	Osteoarthritis	lt-groin	0	6.5	1.5	Effective	6	High risk (AAA)	
6	77/F	Osteoarthritis	It-groin	0	7.2	1.5	Effective	3	Rejected	
			It-trochanteric	F	7.6	2	Effective	3	,	
7	64/F	Osteoarthritis	rt-groin	0	7.5	3.1	Effective	5	Rejected	
8	55/F	Osteoarthritis	rt-groin	0	7.2	3.5	Effective	1	High risk (heart disease)	
9	42/F	Congenital dislocation	rt-groin, thigh	0	7.2	0.5	Effective	11	Postoperative	
10	26/M	Dislocation and fracture	It-groin	0	8.2	1.3	Effective	8	Postoperative	
11	26/F	Congenital dislocation	lt-groin	0	6.5	3.8	Ineffective		Postoperative	
		C	lt-trochanteric	F	4.5	4	Ineffective			
12	87/F	Osteoarthritis	rt-groin	0	6.5	3.2	Effective	4	Postoperative	
			rt-trochanteric	F	5.7	2.3	Effective	6	·	
13	57/F	Metastasis	lt-groin	Ö	7.8	2.5	Effective	1	Not indicated	
			It-trochanteric	F	7.8	2.5	Effective	1		
14	70/M	Metastasis	lt-groin	Ö	7.1	6	Ineffective		Not indicated	

Kawaguchi, 2001

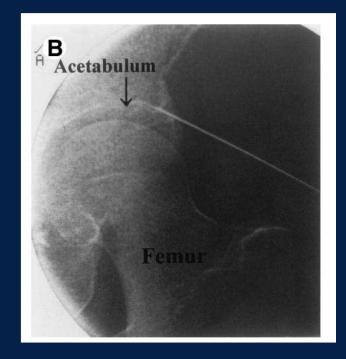

					S S	cores		Duration of	
0.000	Age/ Sex	Disease	Dein	Tractmente		After	Outeenee	Effectiveness	Oneration
Cases	Sex	Disease	Pain	Treatments	fore	After	Outcome	(mo)	Operation
1	62/F	Osteoarthritis	rt-groin	0	.5	1.8	Effective	6	Rejected
2	74/F	Osteoarthritis	rt-groin	0	.2	2.2	Effective	3	Rejected
			rt-trochanteric	F	.2	2.5	Effective	3	
3	71/F	Osteoarthritis	bil-groin	0	.2	3.5	Effective	2	Rejected
4	85/F	Osteoarthritis	bil-groin	0	.5	4.5	Ineffective		Rejected
5	74/M	Osteoarthritis	lt-groin	0	.5	1.5	Effective	6	High risk (AAA)
6	77/F	Osteoarthritis	It-groin	0	.2	1.5	Effective	3	Rejected
			It-trochanteric	F	.6	2	Effective	3	
7	64/F	Osteoarthritis	rt-groin	0	.5	3.1	Effective	5	Rejected
8	55/F	Osteoarthritis	rt-groin	0	.2	3.5	Effective	1	High risk
									(heart disease)
9	42/F	Congenital disloca	rt-groin, thigh	0	.2	0.5	Effective	11	Postoperative
10	26/M	Dislocation and fra	lt-groin	0	.2	1.3	Effective	8	Postoperative
11	26/F	Congenital disloca	It-groin	0	.5	3.8	Ineffective		Postoperative
		-	It-trochanteric	F	.5	4	Ineffective		
12	87/F	Osteoarthritis	rt-groin	0	.5	3.2	Effective	4	Postoperative
			rt-trochanteric	F	.7	2.3	Effective	6	
13	57/F	Metastasis	lt-groin	0	.8	2.5	Effective	1	Not indicated
			It-trochanteric	F	.8	2.5	Effective	1	
14	70/M	Metastasis	lt-groin	0	.1	6	Ineffective		Not indicated
			-						

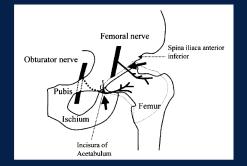



Obturator Branches

Reg Anesth Pain Med. 2001 Nov-Dec;26(6):576-81.

Percutaneous radiofrequency lesioning of sensory branches of the obturator and femoral nerves for the treatment of hip joint pain.





Femoral Branches

Kawaguchi, 2001

					_				
	Age/				VAS S	cores		Duration of fectiveness	
Cases	Sex	Disease	Pain	Treatme	Before	After	Outcome	(mo)	Operation
1	62/F	Osteoarthritis	rt-groin	0	6.5	1.8	Effective	6	Rejected
2	74/F	Osteoarthritis	rt-groin	0	6.2	2.2	Effective	3	Rejected
			rt-trochanteric	F	6.2	2.5	Effective	3	
3	71/F	Osteoarthritis	bil-groin	0	7.2	3.5	Effective	2	Rejected
4	85/F	Osteoarthritis	bil-groin	0	6.5	4.5	Ineffective		Rejected
5	74/M	Osteoarthritis	lt-groin	0	6.5	1.5	Effective	6	High risk (AAA)
6	77/F	Osteoarthritis	lt-groin	0	7.2	1.5	Effective	3	Rejected
			It-trochanteric	F	7.6	2	Effective	3	
7	64/F	Osteoarthritis	rt-groin	0	7.5	3.1	Effective	5	Rejected
8	55/F	Osteoarthritis	rt-groin	0	7.2	3.5	Effective	1	High risk
			-						(heart disease)
9	42/F	Congenital dislocation	rt-groin, thigh	0	7.2	0.5	Effective	11	Postoperative
10	26/M	Dislocation and fracture	lt-groin	0	8.2	1.3	Effective	8	Postoperative
11	26/F	Congenital dislocation	lt-groin	0	6.5	3.8	Ineffective		Postoperative
		-	It-trochanteric	F	4.5	4	Ineffective		
12	87/F	Osteoarthritis	rt-groin	0	6.5	3.2	Effective	4	Postoperative
			rt-trochanteric	F	5.7	2.3	Effective	6	
13	57/F	Metastasis	lt-groin	0	7.8	2.5	Effective	1	Not indicated
			lt-trochanteric	F	7.8	2.5	Effective	1	
14	70/M	Metastasis	lt-groin	0	7.1	6	Ineffective		Not indicated

Limited Evidence

Curr Pain Headache Rep. 2019 May 1;23(6):38. doi: 10.1007/s11916-019-0775-z.

A Review of Current Denervation Techniques for Chronic Hip Pain: Anatomical and Technical Considerations.

Kumar P¹, Hoydonckx Y¹, Bhatia A^{2,3}.

Author/yr	Sample Size	Nerve	Imaging	Follow up time	Outcome on Pain
Kawaguchi, 2001	14	ON and FN	Fluoroscopy	11 months	60% reduction in pain score
Rivera, 2012	18	ON and FN	Fluoroscopy	6 months	33% reduction in pain score
Chye, 2015	15	ON and FN	Fluoroscopy	3 months	60% reduction in pain score
Okada, 1993	15	ON and FN	Fluoroscopy	12 months	Pain relief in 14/15 patients
Kapural, 2018	23	ON and FN	Fluoroscopy + ultrasound	6 months	>80% reduction in pain score
Tinnirello, 2018	14	ON and FN	Fluoroscopy	12 months	>50% improvement in 9/14 pts at 12 mo

Interventional Options for Post TKA Pain

Genicular RFA for Post TKA Pain

The therapeutic effect of genicular nerve radiofrequency for chronic knee pain after a total knee arthroplasty: A systematic review

James B. Meiling ^{a,*}, Brandon S. Barndt ^b, Christopher T. Ha ^a, James E. Eubanks Jr. ^c, Justin B. Schappell ^a, George M. Raum ^c, Samir A. Khan ^d, Larry Prokop ^e, Aaron Conger ^f, Zachary L. McCormick ^f, Christine L. Hunt ^g

11 studies included

• 1 RCT, 5 retrospective cohort studies, 2 case series, 3 case reports

265 patients total

Studies included regular RFA, cooled RFA, and pulsed RFA

Meiling et al. RCT by Qudsi-Sinclair et al.

Double-blind RCT of 28 patients comparing genicular RFA vs genicular nerve block (anesthetic + steroid) Both groups demonstrated significant improvements at 6 and 12 months in NRS, OKS, and Knee Society Score

Between group differences were not significant (p > 0.05)

Patient perception:

 - 65% of RFA group reported "very much better" or "much better"

- 35% of nerve block group reported the above

Meiling et al. Systematic review results

Extreme heterogeneity in the studies included in this review

Studies included reported positive results in pain and disability ranging from **30-100%**

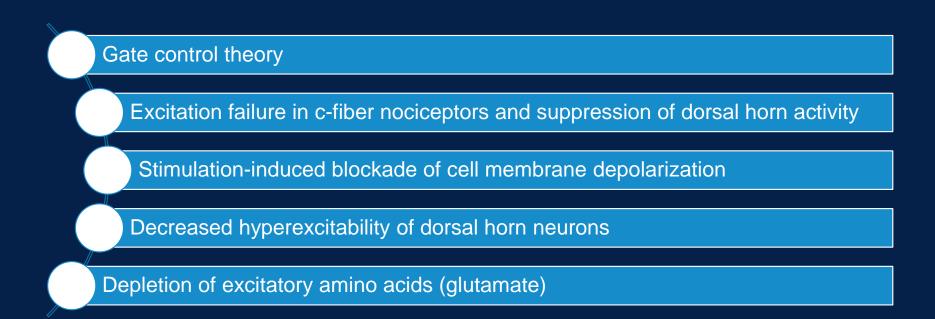
Very few adverse events reported

Conclusion: there is limited evidence associated with low certainty to support the use of genicular RFA for post-TKA pain, largely due to inconsistency and risk bias

Genicular RFA for Post-TKA Pain

	.S. National Librar icalTrials.		Find Studies ▼	About Studies ▼	Submit Studies 🔻	Resources -	Abou
Home >	Search Results >	Study Record Detail					
Efficac	y of Genicular N	lerve Radiofrequency					
					ClinicalTrials.gov Id	entifier: NCT0410	0707

Neuromodulation


Peripheral Nerve Stimulation (PNS)

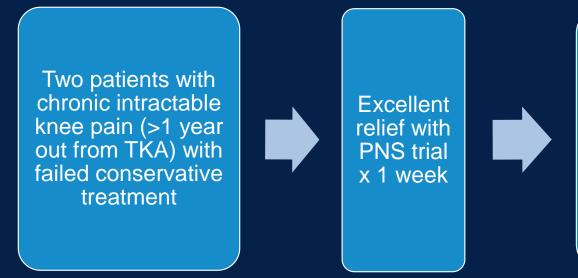
Mechanism of Action for PNS

Nayak et al. Pain Research and Treatment. 2018.

Ultrasound-Guided Peripheral Nerve Stimulation for Knee Pain: A Mini-Review of the Neuroanatomy and the Evidence from Clinical Studies @

Chih-Peng Lin, MD, PhD, Ke-Vin Chang, MD, PhD ∞, Wei-Ting Wu, MD, Levent Özçakar, MD

Pain Medicine, Volume 21, Issue Supplement_1, August 2020, Pages S56–S63,


Author, Year, Journal	Study Design	Patient's Characteristics	Number	Mear Age, y	Target Nerves	Treatment	Outcome	Adverse Effects
Ilfeld et al. 2017 [18], Pain Practice	Case series	Persistent pain after TKA	2 males, 3 females	53	Femoral and sciatic nerves	Helically coiled monopolar- insulated electrical leads (MicroLead, SPR Therapeutics) connected to an external pulse stimulator used for 2 h	Immediate pain relief at rest by 63%, during passive ROM by 14%, and during active ROM by 50%	No device-related adverse events
Ilfeld et al. 2017 [19], Journal of Orthopaedic Surgery and Research	Case series	Persistent pain after TKA	2 males, 3 females	60.8	Femoral and sciatic nerves	Helically coiled monopolar- insulated electrical leads (MicroLead, SPR Therapeutics) connected to an external pulse stimulator used for 1–2 h	Average pain decrease: 93% at rest, 27% at passive ROM, and 30% at active ROM	No device-related adverse events
Ilfeld et al. 2019 [20], Neuromodulation	Case series	Being scheduled to undergo primary unilateral TKA	3 males, 4 females	67.7	Femoral and sciatic nerves	Helically coiled monopolar- insulated electrical leads (MicroLead, SPR Therapeutics) connected to an external pulse stimulator used both at home and in the hospital for up to 6 wk	Postoperative pain <4/10 of NRS (N = 6), opioid discontinuation (N = 4), improvement of >10% on 6MWT and 95% on WOMAC at the 12-wk follow-up	Discomfort (N = 1) and bruise (N = 1) over the implant site, nonspecific headache (N = 1), no serious device-related adverse events

PNS for Chronic Post-TKA Pain

Novel approach for peripheral subcutaneous field stimulation for the treatment of severe, chronic knee joint pain after total knee arthroplasty

William Porter McRoberts ¹, Martin Roche

Permanent implantation

- significant improvement in walking distance, standing and sitting tolerance
- patient 1: 50-70% pain improvement during the day and 100% at night at 6mo
- patient 2: 80-90% relief at 2.5 mo

Summary

- Medication Mgt: Topical NSAIDs (1st line), Non-selective oral NSAIDs (2nd line). Consider Tramadol and Duloxetine
- Ablations: Genicular nerve, Femoral/Obturator sensory articular branches
 - Promising evidence for genicular nerve RFA for refractory knee OA pain, with a success rate of 74% at 6 months.
 - Limited evidence for hip denervation and genicular RFA for post-TKA pain
- PNS: Some limited evidence for acute post-TKA pain. More evidence needed for both acute and chronic post-TKA pain

Thank you!

References

- 1. Cheppalli N, Bhandarkar AW, Sambandham S, Oloyede SF. Safety and Efficacy of Genicular Nerve Radiofrequency Ablation for Management of Painful Total Knee Replacement: A Systematic Review. *Cureus*. 2021;13(11):e19489. doi:10.7759/cureus.19489
- 2. Cheppalli N, Singanamala N, Choi TJ, Anand A. Intra-Articular Corticosteroid Injection After Total Knee Replacement: Is it Safe? Cureus. 2021;13(11). doi:10.7759/cureus.19700
- 3. Choi EJ, Choi YM, Jang EJ, Kim JY, Kim TK, Kim KH. Neural Ablation and Regeneration in Pain Practice. *Korean J Pain*. 2016;29(1):3-11. doi:10.3344/kjp.2016.29.1.3
- 4. Choi WJ, Hwang SJ, Song JG, et al. Radiofrequency treatment relieves chronic knee osteoarthritis pain: a double-blind randomized controlled trial. *Pain*. 2011;152(3):481-487. doi:10.1016/j.pain.2010.09.029
- 5. Fonkoué L, Behets C, Kouassi JÉK, et al. Distribution of sensory nerves supplying the knee joint capsule and implications for genicular blockade and radiofrequency ablation: an anatomical study. Surg Radiol Anat. 2019;41(12):1461-1471. doi:10.1007/s00276-019-02291-y
- 6. Gonzalez FM. Cooled Radiofrequency Genicular Neurotomy. *Techniques in Vascular and Interventional Radiology*. 2020;23(4):100706. doi:10.1016/j.tvir.2020.100706
- 7. Gunaratne R, Pratt DN, Banda J, Fick DP, Khan RJK, Robertson BW. Patient Dissatisfaction Following Total Knee Arthroplasty: A Systematic Review of the Literature. *The Journal of Arthroplasty*. 2017;32(12):3854-3860. doi:10.1016/j.arth.2017.07.021
- 8. Hagedorn JM, Wooster BM, Hunt CL, Moeschler SM, Orhurhu V, Trousdale RT. Beyond Revision Surgery: Work-Up and Interventional Treatments for the Painful Total Knee Arthroplasty. *Pain Practice*. 2020;20(8):929-936. doi:10.1111/papr.12924
- 9. Ilfeld BM, Ball ST, Cohen SP, et al. Percutaneous Peripheral Nerve Stimulation to Control Postoperative Pain, Decrease Opioid Use, and Accelerate Functional Recovery Following Orthopedic Trauma. *Mil Med.* 2019;184(Suppl 1):557-564. doi:10.1093/milmed/usy378
- 10. Ilfeld BM, Gilmore CA, Grant SA, et al. Ultrasound-guided percutaneous peripheral nerve stimulation for analgesia following total knee arthroplasty: a prospective feasibility study. *J Orthop Surg Res*. 2017;12(1):4. doi:10.1186/s13018-016-0506-7

References

- 11. Ilfeld BM, Grant SA, Gilmore CA, et al. Neurostimulation for Postsurgical Analgesia: A Novel System Enabling Ultrasound-Guided Percutaneous Peripheral Nerve Stimulation. *Pain Pract.* 2017;17(7):892-901. doi:10.1111/papr.12539
- 12. Ilfeld BM, Said ET, Finneran JJ, et al. Ultrasound-Guided Percutaneous Peripheral Nerve Stimulation: Neuromodulation of the Femoral Nerve for Postoperative Analgesia Following Ambulatory Anterior Cruciate Ligament Reconstruction: A Proof of Concept Study. Neuromodulation. 2019;22(5):621-629. doi:10.1111/ner.12851
- 13. Kawaguchi M, Hashizume K, Iwata T, Furuya H. Percutaneous radiofrequency lesioning of sensory branches of the obturator and femoral nerves for the treatment of hip joint pain. *Reg Anesth Pain Med.* 2001;26(6):576-581. doi:10.1053/rapm.2001.26679
- 14. Kaye AD, Ridgell S, Alpaugh ES, et al. Peripheral Nerve Stimulation: A Review of Techniques and Clinical Efficacy. *Pain Ther.* 2021;10(2):961-972. doi:10.1007/s40122-021-00298-1
- 15. Kumar P, Hoydonckx Y, Bhatia A. A Review of Current Denervation Techniques for Chronic Hip Pain: Anatomical and Technical Considerations. *Curr Pain Headache Rep.* 2019;23(6):38. doi:10.1007/s11916-019-0775-z
- 16. Lin CP, Chang KV, Wu WT, Özçakar L. Ultrasound-Guided Peripheral Nerve Stimulation for Knee Pain: A Mini-Review of the Neuroanatomy and the Evidence from Clinical Studies. *Pain Medicine*. 2020;21(Supplement_1):S56-S63. doi:10.1093/pm/pnz318
- 17. McRoberts WP, Roche M. Novel approach for peripheral subcutaneous field stimulation for the treatment of severe, chronic knee joint pain after total knee arthroplasty. *Neuromodulation*. 2010;13(2):131-136. doi:10.1111/j.1525-1403.2009.00255.x
- 18. Meiling JB, Barndt BS, Ha CT, et al. The therapeutic effect of genicular nerve radiofrequency for chronic knee pain after a total knee arthroplasty: A systematic review. *Interventional Pain Medicine*. 2022;1(1):100072. doi:10.1016/j.inpm.2022.100072
- 19. Nayak R, Banik RK. Current Innovations in Peripheral Nerve Stimulation. Pain Res Treat. 2018;2018:9091216.
 doi:10.1155/2018/9091216
- 20. Tate Q, Conger A, Burnham T, et al. The Effectiveness and Safety of Genicular Nerve Radiofrequency Ablation for the Treatment of Recalcitrant Knee Pain Due to Osteoarthritis: a Comprehensive Literature Review. *Curr Phys Med Rehabil Rep.* 2019;7(4):404-413. doi:10.1007/s40141-019-00246-3

