Is New Always Better? What have We Learned from Total Hip Arthroplasty?

Michael P. Bolognesi, MD Professor of Orthopaedic Surgery Division Chief, Adult Reconstruction Duke University Medical Center

Duke Orthopaedic Surgery

The Department of Orthopaedic Surgery University of California San Francisco School of Medicine

UCSF Arthroplasty for the Modern Surgeon: Hip, Knee and Health Innovation Technology in Sonoma

Division of Adult Reconstruction

Disclosures

- Amedica Stock Options, Surgical Advisory Board
- Zimmer Biomet Royalties, Consulting Payments, Resident Educational Support, Design Surgeon, Research Support
- Total Joint Orthopedics Stock and Stock Options, Advisory Board Member, Resident Educational Support, Consultant Payments, Design Surgeon
- Depuy Research Support, Resident Educational Support, Principal Investigator
- Exactech- Resident Educational Support
- Stryker Resident Educational Support
- Smith and Nephew- Royalties, Resident Educational Support, Fellowship Support
- EOA- Board of Directors
- SOA Board of Directors
- Omega Fellowship Support- Fellowship Director
- North American Specialty Hospital- Advisory Board

LEARNING HEALTH UNIT DATA. DECISIONS. OUTCOMES.

and capacity

analyzing imaging related to clinical decision

making

Unical Research Institute MUSCULOSKELETAL

U

- History
- *MOM*
- The Trunnion
- Modularity
- The Concern about Dislocation ..
- I apologize that this talk casts a little negative light on the operation of the century....

History

Charnley MOM x 2 Highly Cross Linked Poly

Lots of things work
 Review

13

Ian D Learmonth, Claire Young, Cecil Rorabeck

A Story about Hylamer...

Hylamer

- Collaborative project between Depuy and Dupont
- Subjected UHMWPE to high pressure and high temperature and then cooled at a slow controlled rated
- Increased crystallinity from 50% to 90%
- Higher yield strength, tensile strength, creep resistance, impact resistance and modulus.
- No improved wear in simulator studies?
- Over 80,000 liners implanted

Brief Communication

Early Failure of Hylamer Acetabular Inserts Due to Eccentric Wear

Michael J. Chmell, MD, Robert Poss, MD, William H. Thomas, MD, and Clement B. Sledge, MD

Brief Communication

Early Osteolysis With Hylamer Acetabular Liners

James H. Graeter, MD, and Russell Nevins, MD

Abstract: We reviewed 78 patients with Hylamer acetabular liners (DePuy-Dupont Orthopedics, Warsaw, IN), with a mean follow-up of 3.8 years (range, 2–6 years), for signs of osteolysis secondary to polyethylene wear. Nine patients (11.5%) showed osteolysis greater than 1 cm². One patient had a greater trochanter fracture through a lytic area, one patient required a revision at 4 years for severe acetabular and femoral lysis with lesser trochanter fracture, and a second patient is awaiting revision. **Key** words: DePuy. Hylamer wear, osteolysis, revision.

Disclosure: No "modern" bearing is perfect

Be Aware..... Bearing couplings

V

All metals in contact with biological systems undergo corrosion. This electrochemical process leads to the formation of metal ions, which may activate the immune system by forming complexes with endogenous proteins.

> CURRENT CONCEPTS REVIEW METAL SENSITIVITY IN PATIENTS WITH ORTHOPAEDIC IMPLANTS

> > BY NADIM HALLAB, PHD, KATHARINE MERRITT, PHD, AND JOSHUA J. JACOBS, MD

The first time MOM on failed...

Loosening, infection, bearing failure, Charnley implant!

Duke Orthopaedic Files

So why did we bring MOM back?....

Decreased wear related lysis
Implant longevity
Decreased dislocation related to head size (approach dependent)
Improved function?

Decreased wear related lysis Implant longevity Decreased dislocation related to head size (approach dependent) Improved function?

The optimal metal bearing: smooth surface, large diameter, low clearance, and idealized lubrication environment (high carbon content, forged or cast?)

www.depuyjnj.com

Pandit et al

18 Copyright © 2005 by The Journal of Bone and Joint Surgery, Incorporated

BY A.P. DAVIES, MD, H.G. WILLERT, MD, P.A. CAMPBELL, PHD, I.D. LEARMONTH, FRCS, AND C.P. CASE, MRCPATH Investigation performed at Bristol Implant Research Centre, Avon Orthopaedic Centre, Southmead Hospital, Bristol, United Kingdom

J Bone Joint Surg Br. 2008; 90-B:847-851

Real Concerns

- Serum Cobalt and Chromium
- Carcinogenicity
- Chromosomal abnormalities
- Metal sensitivity- ALVAL

- Local tissue toxicity- metal reactivity leading to necrosis, osteolysis
- Pseudotumor
- High failure rate
- Technical issues?

www.periodictable.com

• May 25, 2010: UK Medicines and Healthcare products Regulatory Agency (MHRA) Device Alerts

March 5, 2010

URGENT FIELD SAFETY NOTICE

DePuy ASR[™] XL Monoblock Metal-on-Metal System

Type of Action: New revision rate data/information regarding the use of the device

• August 24, 2010- U.S. voluntary recall

www.depuyjnj.com

Lay press and internet helping us out as always...

Th

Concerns

The Journal of Bone & Joint Surgery

This is an enhanced PDF from The Journal of Bone and Joint Surgery The PDF of the article you requested follows this cover page.

Arthroprosthetic Cobaltism: Neurological and Cardiac Manifestations in Two Patients with Metal-on-Metal Arthroplasty: A Case Report

Stephen S. Tower

www.nyt

J Bone Joint Surg Am. published online Oct 29, 2010 Access the most recent version at doi:10.2106/JBJS.J.00125

www.wtvd/abc11_investigates.com

We were seeing a lot of painful MOM THA's

- Work up became predictable
- Regular WU (films, infection, etc)
- Serum Cobalt
- Serum Chromium
- MARS MRI
- US Exam
- Aspiration in selected cases

Or you could see this.....

Clin Orthop Relat Res (2013) 471:430–438 DOI 10.1007/s11999-012-2547-5 Clinical Orthopaedics and Related Research[®]

SYMPOSIUM: PAPERS PRESENTED AT THE ANNUAL MEETINGS OF THE HIP SOCIETY

The Withdrawn ASRTM THA and Hip Resurfacing Systems

How Have Our Patients Fared Over 1 to 6 Years?

Kevin T. Hug MD, Tyler S. Watters MD, Thomas P. Vail MD, Michael P. Bolognesi MD

Fig. 1 The Kaplan-Meier cumulative probability of survival of the ASR^{TM} cup with an end point of revision for any reason is 0.87 for THA and 0.88 for hip resurfacing.

But it was not just the ASR....

Comparing ASR and Pinnacle Cohorts

Key Findings

- ASR earlier timing to MRI, higher Cobalt (and Ratio)
- No other significant differences
- Pseudotumor Findings:
 - Similar prevalence, size, and category

	Overall (N=207)	ASR (N=78)	Pinnacle (N=129)	P-values
Demographics				
Age, mean (years)	51.4	50.1	52.2	0.097
Male, N (%)	119	49 (63%)	70 (54%)	0.228
Patient factors				
Time to MRI	6.5	5.6	7.0	< 0.0001
Bilateral MOM	56 (27%)	23 (30%)	33 (26%)	0.540
Symptomatic	129 (62%)	49 (63%)	80 (62%)	0.908
Laboratory Data				
Cobalt Median (Mean) (µg/L)	7.1 (13.6)	9.7 (20.1)	4.8 (9.3)	< 0.0001
Chrom Median (Mean) (µg/L)	2.6 (7.2)	3.0 (6.4)	2.4 (7.7)	0.462
Ratio Median (Mean)	1.8 (3.0)	3.4 (4.7)	1.3 (1.9)	< 0.0001
MARS-MRI Results				
Pseudotumor Present, N (%)	107 (52%)	41 (53%)	66 (51%)	0.280
Size Median (mean) (cm)*	5.1 (5.9)	5.0 (5.8)	5.1 (5.9)	0.682
Category				0.974
Type I, N (%)	65 (61%)	24 (58%)	41 (62%)	
Type II, N (%)	22 (20%)	11 (27%)	11 (17%)	
Type III, N (%)	20 (19%)	6 (15%)	14 (21%)	

*Size was determined by measuring the maximum diameter in either the axial or coronal plane on MARS-MRI

Factors Associated With Pseudotumor Presence

Key Findings

- Patients with pseudotumor more likely to have:
 - Higher cobalt levels (and ratio)
 - High offset femoral component
 - Larger acetabular component

	Overall	Pseudotumor	No Pseudotumor	P-values
	(n = 207)	(n = 107)	(n = 100)	
Demographics				
Time from index surgery (years)	6.5	6.3	6.7	0.316
Age, mean (years)	51.4	52.1	50.1	0.531
Male, N (%)	119 (57%)	66 (62%)	53 (53%)	0.207
aboratory Results				
Cobalt Median (Mean) (µg/L)	7.1 (13.6)	8.7 (17)	5.9 (10.1)	0.008
Chrom Median (Mean) (µg/L)	2.6 (7.2)	2.7 (9.1)	2.5 (5.1)	0.363
Ratio Median (Mean)	1.8 (3.0)	2.4 (3.3)	1.6 (2.7)	0.036
mplant Factors				
Offset				
High	85	53	32	0.0126
Standard	98	43	55	
Unknown	24	11	13	
Cup Size Median (Mean) (mm)	55.0 (54.8)	56.0 (55.2)	54.0 (54.3)	0.0277

Pseudotumor Not Correlated With Symptoms

Key Findings

- Symptomatic vs Asymptomatic:
 - Similar metal ion levels
 - Similar pseudotumor prevalence, size, and category
 - Pseudotumor present in **47%** of asymptomatic patients

	Overall	Symptomatic * Asymptomatic		P-values
	(n = 207)	(n = 129)	(n = 78)	
Demographics				
Age, mean (years)	51.4	50.5	53.0	0.046
Male, N (%)	119 (57%)	70 (55%)	49 (76%)	0.228
Laboratory Results				
Cobalt Median (Mean) (µg/L)	7.1	7.2 (14.2)	5.7 (11.7)	0.471
Chrom Median (Mean) (µg/L)	2.6	2.9 (8.0)	2.4 (5.8)	0.841
Ratio Median (Mean)	1.8	1.9 (3.1)	1.7 (2.9)	0.617
MARS-MRI Results				
Pseudotumor Present (%)	107 (52%)	70 (54%)	37 (47%)	0.341
Size Median (Mean) (cm)*	5.1 (5.9)	5.4 (6.3)	4.9 (5.0)	0.295
Category				0.417
Type I, N (%)	65 (61%)	40 (57%)	25 (68%)	
Type II, N (%)	22 (20%)	17 (24%)	5 (13%)	
Type III, N (%)	20 (19%)	13 (19%)	7 (19%)	

*Symptomatic patients defined as having pain and/or weakness/limp

Pseudotumor Correlated With Revision

Key Findings

- Patients undergoing revision more likely to have:
 - Higher ion levels
 - Pseudotumor present
 - Larger pseudotumor
 - Thick-walled or solid pseudotumor

	Overall	Revision	No Revision	P-values
	(n = 207)	(n = 74)	(n =133)	
Demographics				
Age, mean (years)	51.4	50.6	51.9	0.347
Female, N (%)	88	34 (46%)	54 (41%)	0.556
Laboratory Results				
Cobalt Median (Mean) (µg/L)	7.1 (13.6)	12.0 (25.1)	4.0 (6.9)	<0.0001
Chrom Median (Mean) (µg/L)	2.6 (7.2)	4.6 (13.2)	2.1 (3.6)	<0.0001
Ratio Median (Mean)	1.8 (3.0)	2.5 (3.8)	1.7 (2.5)	0.0230
Imaging Results				
Pseudotumor Present (%)	107 (51.7%)	51 (68.9%)	56 (42.1%)	0.0002
Size Median (Mean) (cm)*	5.1 (5.9)	6.5 (7.5)	4.2 (4.4)	<0.0001
Category				<0.0001
Type I, N (%)	65 (61%)	20 (39%)	45 (80%)	
Type II, N (%)	22 (21%)	16 (31%)	6 (11%)	
Type III, N (%)	20 (19%)	15 (29%)	5 (9%)	

Conclusions: Effects of Pseudotumors In Patients

- Overall high prevalence of pseudotumor in patients with MoM THA and MRI (52%)
 - Nearly 40% of pseudotumors either thick-walled cystic lesions or solid lesions
- Factors significantly correlated with pseudotumor presence:
 - Elevated Cobalt ion levels and CoCr ratio
 - High offset stem
 - Increasing cup size
- Patient symptoms may not be reliable indicator of pseudotumor presence or severity
 - 38% of pseudotumors were in asymptomatic patients, no correlation with severity
 - In asymptomatic cohort, pseudotumor prevalence was 47%
- Revised patients have higher ion levels and more frequent and severe pseudotumors

So MOM THA 2.0 was not a good idea....

The revision of non ASR MOM THA educated us about the trunnion....

Not just in MOM THA....

The Journal of Arthroplasty 31 (2016) 264-268

Contents lists available at ScienceDirect The Journal of Arthroplasty

journal homepage: www.arthroplastyjournal.org

Diagnosis and Management of Adverse Local Tissue Reactions Secondary to Corrosion at the Head-Neck Junction in Patients With Metal on Polyethylene Bearings

Darren R. Plummer, MD, MBA ^a, Richard A. Berger, MD ^b, Wayne G. Paprosky, MD ^b, Scott M. Sporer, MD ^b, Joshua J. Jacobs, MD ^b, Craig J. Della Valle, MD ^b

^a Department of Orthopaedic Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio ^b Orthopaedic Surgery, Midwest Orthopaedics at Rush, Chicago, Illinois

D.R. Plummer et al. /	The Journal of Arthroplasty 31	(2016) 264-268
		(

265

Table 1 Primary THA Components.

Case	Femoral Component	Femoral Head Size	Taper Neck Length	Acetabulum Component
1	Zimmer Versys Beaded FullCoat	32	+3.5	Zimmer Trilogy
2	Zimmer Versys Beaded FullCoat	28	+ 10.5	Zimmer Trilogy
3	Zimmer Versys Beaded FullCoat	36	+7	Zimmer Trilogy
4	Zimmer Versys Beaded FullCoat	28	+ 10.5	Zimmer Trilogy
5	Zimmer Versys Beaded FullCoat LHC	32	+3.5	Zimmer Trilogy
6	Zimmer Versys Beaded FullCoat Revision	32	+ 10.5	Zimmer Trilogy
7	Zimmer Versys FiberMetal Taper	32	-3.5	Zimmer Trilogy
8	Zimmer M/L Taper, Kinectiv Modular Neck	32	0	Zimmer Trilogy
9	DePuy Bantam AML Full Porocoat	28	+5	Zimmer Trilogy
10	Stryker Accolade	36	+0	Stryker Trident PSL
11	Zimmer Versys Beaded FullCoat LHC	40	+7	Zimmer Trilogy
12	Zimmer Epoch FullCoat	36	0	Zimmer Trilogy
13	Zimmer Versys Beaded FullCoat LM	32	0	Zimmer Trilogy
14	Zimmer Versys Beaded FullCoat	28	+3.5	Zimmer TM Modular
15	Zimmer Versys Beaded FullCoat LHC	32	+7	Zimmer Trilogy
16	Emperion Stem Full coat	32	0	S&N MR3
17	Zimmer Versys Beaded FullCoat LM	40	0	Zimmer Trabecular metal
18	Zimmer Versys Beaded FullCoat LHC	36	+3.5	Zimmer Trilogy
19	Zimmer Versys Beaded FullCoat	36	7	Zimmer Trilogy
20	Depuy Prodigy AML	32	13	Duraloc Marathon
21	Zimmer Versys Beaded FullCoat	32	0	Zimmer Trilogy
22	Zimmer Versys Beaded FullCoat LHC	32	3.5	Zimmer Trilogy
23	Depuy Tri-Lock	32	13	DePuy Pinnacle
24	Zimmer Versys Beaded FullCoat LHC	32	3	Zimmer Trilogy
25	Zimmer Bias Porous Coated stem	32	0	Zimmer HG2
26	Stryker Accolade	32	8	Stryker Tritanium
27	Zimmer Versys Beaded FullCoat	32	0	Zimmer Trilogy

Gross Trunnion Failure After Primary Total Hip Arthroplasty

Samik Banerjee, MD, Jeffrey J. Cherian, DO, James V. Bono, MD, Steven M. Kurtz, PHD, Rudolph Geesink, MD, R. Michael Meneghini, MD, Ronald E. Delanois, MD, Michael A. Mont, MD

Fig. 2. (A) and (B) Initial radiographic images on presentation (patient 2) showing dissociation of the trunnion from the femoral head.

Fig. 4. Typical bird beak appearance of the trunnion as a result of severe mechanically assisted crevice corrosion. (patient 2).

Spontaneous Modular Femoral Head Dissociation Complicating Total Hip Arthroplasty

CARL T. TALMO, MD; KINZIE G. SHARP, PA-C; MAGDALENA MALINOWSKA, PA-C; JAMES V. BONO, MD; DANIEL M. WARD, MD; JUSTIN LAREAU, MD

Figure 1: Preoperative anteroposterior radiograph of the right hip in Patient 1, showing dissociation of the femoral head and femoral stem.

Figure 2: Postoperative photograph of the retrieved stem from Patient 1, showing severe trunnion wear and deformation. The inset illustrates notching of the trunnion.

Figure 3: Preoperative anteroposterior radiograph showing dissociation of the prosthetic left fernoral head.

Significant metal debris was found within the hip joint and surrounding tissues, including the trochanteric bursa. The trunnion of the prosthesis showed corrosion, severe wear, and deformation, with deep

Figure 4: Postoperative photograph of the retrieved stem obtained from Patient 2, showing similar trunnion wear and deformation as seen in Patient 1, with deep grooves in the inferior femoral neck.

Copyright © 2017 by The Journal of Bone and Joint Surgery, Incorporated

CURRENT CONCEPTS REVIEW Trunnionosis in Total Hip Arthroplasty

Mitchell C. Weiser, MD, MEng, and Carlos J. Lavernia, MD

Investigation performed at the Department of Orthopaedic Surgery, New York University Langone Medical Center, New York, NY, and the Arthritis Surgery Research Foundation, Miami, Florida

Severity of Corrosion and Fretting	Score	Criteria
None	1	No visible corrosion observed.
		No visible signs of fretting observed.
Mild	2	<30% of taper surface discolored or dull;
		Single band or bands of fretting scars involving 3 or fewer machine lines on taper surface
Moderate	3	>30% of taper surface discolored or dull, or
		<10% of taper surface containing black debris, pits, or etch marks;
		Several bands of fretting scars or single band involving more than 3 machine lines
Severe	4	>10% of taper surface containing black debris, pits, or etch marks;
		Several bands of fretting scars involving several adjacent machine lines, or flattened areas with nearby fretting scars

TABLE IV Grades of Recommendation* Recommendation Grade Flexible trunnion designs and alloy compositions should be avoided. В Large heads (≥32 mm) should be avoided. С Mixed alloy head-stem couples should be avoided. С Ceramic heads are less susceptible to trunnion corrosion. В Trunnion should be cleaned and dried prior to head impaction. В Head should be impacted with a single axial-aligned blow of sufficient force. В Serum cobalt and chromium ion levels are useful in diagnosing trunnion corrosion. В Advanced cross-sectional imaging is useful in the diagnosis of ALTR. В Well-fixed corroded femoral stems with structurally intact trunnions may be retained at the time of revision. В

*According to Wright⁹⁰, grade A indicates good evidence (Level-I studies with consistent findings) for or against recommending intervention; grade B, fair evidence (Level-II or III studies with consistent findings) for or against recommending intervention; grade C, poor-quality evidence (Level-IV or V studies with consistent findings) for or against recommending intervention; and grade I, insufficient or conflicting evidence not allowing a recommendation for or against intervention.

How do you clear a trunnion?

Check for updates

I really do not have a great answer.

The Journal of Arthroplasty 33 (2018) 2716-2719

2017 AAHKS Annual Meeting Symposium

Management of the Implant With Taper Corrosion: What to Change and What to Change It to?

Michael P. Bolognesi, MD *

Division of Orthopaedics, Duke University Medical Center, Durham, North Carolina

Bill Giffin from OC one time told me to just make sure to get all of the black stuff off...

Head Selection in Trunnionosis Revision?

....Always?

HSSJ (2017) 13:241–247 DOI 10.1007/s11420-017-9566-4

The Musculoskeletal Journal of Hospital for Special Surgery

ORIGINAL ARTICLE

Ceramic Bearings with Titanium Adapter Sleeves Implanted During Revision Hip Arthroplasty Show Minimal Fretting or Corrosion: a Retrieval Analysis

Chelsea N. Koch, BS • Mark Figgie Jr., BS • Mark P. Figgie, MD • Marcella E. Elpers, BS • Timothy M. Wright, PhD • Douglas E. Padgett, MD

Fig. 2. Metal transfer on the female taper of the ceramic head exhibiting scores of 2 through 5.

Fig. 3. Fretting and corrosion on the inner surface of the titanium alloy sleeve exhibiting scores of 1 through 4.

Speculation that something has changed about the trunnions?.... Increase in ceramic head use from 6.4% to 52% in Humana database

4. Bedard NA, Burnett RA, DeMik DE, Gao Y, Liu SS, Callaghan JJ. Are trends in total hip arthroplasty bearing surface continuing to change? 2007-2015 usage in a large database cohort. J Arthroplasty. 2017 Dec;32(12):3777-81. Epub 2017 Aug 3.

AJRR 2019- 67.8% AJRR 2020- 71%

The article in this symposium by Jacobs et al [2] provides information about our rapidly evolving, but still very incomplete, understanding of the etiology of taper corrosion. The process appears to

> The material presented in this symposium provides a strong background about this problem for the practicing orthopedic surgeon and also practical information about diagnosis and treatment of taper corrosion. However, like any newly emerging problem, there is still much to be learned, and there is no doubt methods of diagnosis and treatment will advance in the future. Orthopedic surgeons treating this problem are advised to stay engaged in the academic processes as more information about this problem becomes available.

What is the next modular problem?....

LJ. Matsen Ko et al. / The Journal of Arthroplasty 31 (2016) 186-189

Orthopaedic Advances

The Use of Dual-mobility Components in Total Hip Arthroplasty

Photograph of the Anatomic Dual Motility component (Stryker Orthopaedics, Mahwah, NJ).

Photograph of the Modular Dual Mobility component (Stryker Orthopsedics, Mahwah, NJ).

Photograph of the E1 Active Articulation dual-mobility component (Biomet, Wansaw, IN).

Contents lists available at ScienceDirect

The Journal of Arthroplasty

journal homepage: www.arthroplastyjournal.org

Revision Arthroplasty

Outcomes of Modular Dual Mobility Acetabular Components in Revision Total Hip Arthroplasty

E. Grant Sutter, MD, MS^{*}, Taylor R. McClellan, MD, David E. Attarian, MD, Michael P. Bolognesi, MD, Paul F. Lachiewicz, MD, Samuel S. Wellman, MD

Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina

Table 1

Complications Following MDM Revision Surgery.

Complications (14)	Details	Management
Dislocations (2)	One isolated dislocation, 1 with 2 dislocations. No intraprosthetic dislocations	Both treated conservatively
Infection (9)	Six acute infections, 3 late infections	Acute infections: 5 1&D, head and liner exchange, Intravenou antibiotics without further issues. One early explant with spacer. Infection persisted and patient required Girdlestone procedure Late infections: explantation of components, placement of antibiotics spacer, and parenteral antibiotics
Femur stem loosening (1)	Thigh pain and radiographic evidence of stem loosening. No evidence of MDM cup failure	Femoral component revised, MDM components retained
Abductor deficiency and aseptic cup loosening (1)	Patient revised to MDM for instability and abductor deficiency. Developed pain and radiographic evidence of cup loosening	Re-revision surgery with removal of MDM components
Pain and adverse metal reaction (1)	Patient revised for MoM reaction. Evidence of adverse metal reaction, developed pain, and cup loosening (CoCr head)	Re-revision surgery with removal of MDM components. Implantation of ceramic head

THE JOUENAL OF ARTHROPLASTY

CrossMark

MDM, modular dual mobility; I&D, irrigation and debridement; MoM, metal-on-metal; CoCr, cobalt chrome alloy

The Journal of Arthroplasty

THE JOURNAL OF Arthroplasty CAAHKS

journal homepage: www.arthroplastyjournal.org

Case Report

Femoral Head Dislodgement Complicating Use of a Dual Mobility Prosthesis for **Recurrent Instability**

Jennifer A. Banzhof DO^b, Claire E. Robbins DPT^b, Alexander van der Ven MD^c, Carl T. Talmo MD^a, James V. Bono MD^a

^a Department of Orthopaedic Surgery, New England Baptist Hospital, Tufts University School of Medicine, Boston, MA ^b Department of Orthopaedic Surgery, New England Baptist Hospital, Boston, MA ^c Doctors Hospital for Orthopedics and Sports Medicine, Coral Gables, FL

Clin Orthop Relat Res (2016) 474:1072–1076 DOI 10.1007/s11999-015-4381-z

CrossMark

CASE REPORT

Dissociation and Intrapelvic Entrapment of a Dual-mobility Polyethylene Component

Keith A. Fehring MD, Daniel J. Berry MD

Metal ions and dual mobility.....

188

LJ. Matsen Ko et al. / The Journal of Arthroplasty 31 (2016) 186-189

Table 1

Data Related to Nine Patients With Serum Cobalt Levels Characterized as Significantly Elevated (>1.6 mcg/L).

Sex/Age/Side	Follow-Up (months)	Cobalt (mcg/L)	Chromium (mcg/L)	Oxford Hip Score	Inner Head Size	Other Potential Sources of Serum Metal Ions
M/50/L	36	3.1	0.4	45	28 mm	Vitamin B Use
F/60/L	25	4.8	0.1	48	22 mm	Contralateral THA
F/66/R	28	2.6	<1.0	48	22 mm	Contralateral THA
F/72/L	25	7.0	2.1	48	22 mm	Contralateral THA and Vitamin B Use
F/47/R	26	1.9	<0.1	36	22 mm	None Found
F/61/R	22	1.8	2.2	48	22 mm	Contralateral Metal-on-Metal THA
M/53/L	23	1.9	0.5	33	22 mm	None Found
F/31/L	21	5.3	0.2	45	22 mm	None Found
F/44/R	36	2.3	1.0	26	22 mm	None Found

M = male, F = female, R = right, L = left, THA = total hip arthroplasty.

Metal ions and dual mobility.....

	The Journal of Arthroplasty 32 (2017) 1581-1585				
	Contents lists available at ScienceDirect	THE DOLENAL OF ARTHROPLASTY			
5-2-60	The Journal of Arthroplasty				
ELSEVIER	journal homepage: www.arthroplastyjournal.org				
Revision Arthroplasty	/				
Metal Ion Levels in Young, Active Patients Receiving a Modular, Dual (Decrease Mobility Total Hip Arthroplasty					
Denis Nam, MD, MSc ^{a, *} , Rondek Salih, BA ^b , Katherine M. Brown, MPH ^b , Ryan M. Nunley, MD ^b , Robert L. Barrack, MD ^b					
^a Department of Orthopedic Surg ^b Department of Orthopedic Surg	ery, Rush University Medical Center, Chicago, Illinois ery, Washington University School of Medicine, Barnes-Jewish Hospital, St. Louis, Missouri				

1584

D. Nam et al. / The Journal of Arthroplasty 32 (2017) 1581–1585

Table 4

Summary of Patients in Each Cohort with a Whole Blood Cobalt Level Outside the Reference Range at One Year Postoperatively.

	Age (y)	Gender (Male or Female)	Femoral Head Composition	One-Year Cobalt (µg/L)	One-Year Chromium (µg/L)	One-Year Postoperative Harris Hip Score
Conventional co	hort					
Patient 1	42	Female	Oxidized zirconium	0.39	0.52	100
Dual mobility co	hort					
Patient 1	44	Male	Ceramic	0.89	0.11	91
Patient 2	55	Male	Cobalt alloy	1.82	0.26	96
Patient 3	46	Female	Cobalt alloy	0.34	0.13	85
Patient 4	58	Male	Ceramic	0.86	-0.11	95

Fig. 1 Dual mobility utilization from 2013 through 2018, which showed a year-over-year increase for primary and revision total hip arthroplasty during the period examined

Courtesy of Nathanael Heckmann, MD

There has been at least one good idea..

There is no doubt XLPE works in the Hip....

Figure L2

Risk of revision by bearing surface (cumulative hazard with 95% confidence intervals)

© National Joint Registry 2012

16. Jennings JM, Martin JR, Kim RH, Yang CC, Miner TM, Dennis DA. Metal artifact reduction sequence MRI abnormalities in asymptomatic patients with a ceramic-on-polyethylene total hip replacement. J Bone Joint Surg Am. 2017 Apr 5;99(7): 593-8.

Ceramic-on-Polyethylene

Among asymptomatic patients with a ceramic-on-polyethylene hip replacement, MARS MRI identified an 18% rate of fluid collections (9 of 50 hips)¹⁶. No solid lesions or tissue destructions were seen in this cohort. The clinical importance and natural history of these findings remain unknown and warrant longer-term follow-up.

The Holy Grail for THA

Safe Zone? We may need some help postioning The spine plays a real role

Clinical Orthopaedics and Related Research®

Published online: 10 May 2016 D The Association of Bone and Joint Surgeonstil: 2016

Clin Onloge Relat Res (2016) 474-1796-1801 / DOI 10.1007/011999-006-4477-

CORR Insights[®]: Does Degenerative Lumbar Spine Disease Influence Femoroacetabular Flexion in Patients Undergoing Total Hip Arthroplasty?

Lawrence D. Dorr MD

8 ANGLE (degrees)

We have to figure out the spine...

• It matters.....

Clin Orthop Relat Res (2016) 474:1798-1801 / DOI 10.1007/s119

CORR Insights[®]: Does

Spine Disease Influen

Flexion in Patients Ur

CORR Insights

Arthroplasty?

The Impact of Lumbar Spine Disease and Deformity on Total Hip Arthroplasty Outcomes

Daniel J. Blizzard, MD, MS*, Brian T. Nickel, MD, Thorsten M. Seyler, MD, PhD, Michael P. Bolognesi, MD

-	umbar Fusion		Post (DnlyLSF		Ant Only LSF			360° LSF				
CrossMark													
0	IN	IN	OR	CI	P-value	IN	OR	CI	P-value	IN	OR	CI	P-value
	2.27%	3.13%	1.39	1.27-1.52	<0.001	3.05%	1.35	0.88-2.09	0.173	4.00%	1.79	1.31-2.45	< 0.001
	3.02%	5.36%	1.82	1.70-1.95	< 0.001	6.68%	2.3	1.70-3.10	< 0.001	7.80%	2.72	2.16-3.41	< 0.001
	1.71%	2.01%	1.18	1.06-1.32	0.002	2.47%	1.46	0.90-2.36	0.124	2.83%	1.68	1.16-2.42	0.006
	0.38%	0.39%	1.02	0.80-1.30	0.908	0.73%	1.91	0.79-4.60	0.143	0.49%	1.28	0.53-3.08	0.582
	2.35%	2.93%	1.25	1.15-1.37	<0.001	5.08%	2.22	1.58-3.13	<0.001	4.2.9%	1.86	1.38-2.52	< 0.001
	2.32%	3.11%	1.35	1.24-1.48	< 0.001	3.92%	1.72	1.17-2.52	0.005	4.3 9%	1.93	1.43-2.60	< 0.001
	4.75%	6.82%	1.47	1.38-1.56	<0.001	8.56%	1.88	1.44-2.45	<0.001	10.24%	2.29	1.87-2.80	< 0.001
	1.61%	1.93%	1.2	1.08-1.34	0.001	2.18%	1.36	0.82-2.27	0.237	2.05%	1.28	0.83-1.97	0.265

Lawrence D. Dorr MD

BattleBots?

	Contents lists available at ScienceDirect	THE JOURNAL OF ARTHROPLASTY					
	The Journal of Arthroplasty						
ELSEVIER	journal homepage: www.arthroplastyjournal.org						
Primary Hip &	Primary Hip & Knee Arthroplasty						
Robotic Su	rgery in Total Joint Arthroplasty: A Survey of the AAHKS	() Check for updates					
Membership to Understand the Utilization, Motivations, and Perceptions of Total Joint Surgeons							
William F. Sherman, MD, MBA, Victor J. Wu, MD * Department of Orthopaedic Surgery, Tulane University School of Medicine, New Orleans, IA							

Robot arm-assisted surgerv should be part of vour

While increased precision was a major motivator for many respondents, non-clinical reasons such as marketing played a major role in a surgeon's decision-making process.

Current % of total joint practice using assistance $(n = 239)$	* or total joint cases for robot ann-assisted surgery competency ($n = 704$)		= 238)	174 (77 1)
0%-20%	0-20	128 (18.2)		29 (12.2)
20%-40%	20-40	381 (54.1)	peers/staff	11 (4.7)
60%-80%	40-70	131 (18.6)		11 (4.7) 7 (2.9)
80%-100%	70-100	35 (5.0)		6 (2.5)
	100-200	15 (2.1)		
	200+	14 (2.0)		

Name	TSolution-One	ROSA	Mako	Navio	Orthotaxy	CORI	OMNIbotic
Manufacturer	THINK Surgical, Fremont, CA	Zimmer Biomet, Warsaw, IN	Stryker, Mahwah, NJ	Smith & Nephew, Memphis, TN	DePuy Synthes, Warsaw, IN	Smith & Nephew, Memphis, TN	Corin, Tampa, FL
Platform	Open	Closed	Closed	Closed	Closed	Closed	Closed
Туре	Active	Semiactive	Semiactive	Semiactive	Semiactive	Semiactive	Passive
FDA clearance	2019	2019	2015	2017	Pending	Pending	2017
Technique	Milling	Cutting guide	Saw or burr	Burr	Saw	Burr	Cutting guide
Image	СТ	XR or imageless	СТ	Imageless	СТ	Imageless	СТ

Siddiqi et al, JAAOS, 2021

D.J. Jacofsky, M. Allen / The Journal of Arthroplasty 31 (2016) 2353-2363

The Data Table 2 Jultones Author Total kn

tcomes of Robotic-Assisted Arthroplasty.	
Author (y); Platform	Brief Outcomes Summary
Total knee arthroplasty (TKA)	
Borner et al (2004); Robodoc	Postoperative knee alignment was restored to the planned ideal mechanical axis (00) in 97% of cases. Remaining cases were restored within 10 of ideal mechanical axis.
Song et al (2011); Robodoc	Significantly less radiographic outliers postoperatively with robotic TKA. No significant difference in patient-reported outcomes.
Song et al (2013); Robodoc	No differences in postoperative range of motion, Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) scores, and Hospital for Special Surgery (HSS) scores. Improved accuracy of Davise Duraneiro gene balance with cohering application of YA
Koulalis et al (2011); iBlock	Improved accuracy and efficiency of final bone resections in all planes vs conventional computer-assisted navigation techniques.
Suero et al (2012); iBlock	Significant reduction in postoperative mechanical alignment variability and tourniquet time compared with conventional navigated instrumentation.
Koenig et al (2012); iBlock	Bone resections within 30 of neutral in 98% of cases.
Ponder et al (2013); iBlock	Significantly more accurate and repeatable bone resections than conventional instrumentation.
Unicompartmental knee arthroplasty (UKA)	
Gregori et al (2014); Navio PFS	Postsurgical mechanical axis alignment within 10 of the plan in 91% of cases. Improved Oxford Knee Scores from preoperative to 6 weeks postoperative.
Wallace et al (2014); Navio PFS	Rapid learning curve of an average of 8 (5-11) procedures with the average time over the first 4 cases (tracker placement to trial acceptance) of 64.9 (27-102) min.
Simons et al (2014); Navio PFS	Narrowed learning curve of the Navio system from an initial case duration of 85-48 min
Lonner et al (2015); Navio PFS	Medial UKA achieved accurate implementation of the surgical plan with small errors in implant placement
Lonner (2009); Mako	Robotic arm—assisted UKA demonstrated increased accuracy in recreating the posterior
Coon (2009); Mako	Robotic UKA demonstrated short learning curve and excellent radiographic outcomes
Jinnah et al (2009); Mako	(2.5 times improvement in tibial alignment, lower 5D). Learning curve of robotic-assisted UKA procedures averaged 13 cases. The learning cases
Lonner et al (2010); Mako	Tibial component alignment was found to be more accurate and less variable for Mako
Pearle et al (2010); MAKO	The planned and intraoperative tibiofemoral angle was within 1 degree. The postoperative
Citak et al (2013); Mako	long leg axis radiographs were within 1.6 degrees. UKA was more precise using a semiactive robotic system with femoral and tibial component
Jones et al (2013); Mako	position compared to the manual technique. Robotic arm—assisted UKA resulted in significantly lower postoperative pain and greater
Coon et al (2014); MAKO	functionality as measured by American Knee Scores compared with manual UKA. Mako UKA had a cumulative revision rate of 1.2% and high patient satisfaction at an
Coon et al (2015); MAKO	average of 29.6 months follow-up. At 2-year follow-up, 92% of patients indicated that they were either very satisfied or
	satisfied with their robotic arm-assisted UKA procedure.
Bicompartmental arthroplasty	
Tamam et al (2015); Mako	Patients who received patellolemoral arthroplasty in combination with medial or lateral UKA demonstrated 83% good to excellent results.
Conditt et al (2016); Mako	Robotic-assisted bicompartmental arthroplasty shows good survivorship and functional outcomes at 2-year follow-up with 1/48 procedures requiring revision to TKA.
Total hip arthroplasty (THA)	
Bargar et al (1998); Robodoc	Robotic THA showed statistically improved fit, fill, and alignment when using ROBODOC
Bach et al (2002); Robodoc	to perform comentless primary THA when compared with manual THA Robotic THA showed equivalent kinematic gait analysis, pelvic, and hip motion when
Haigo et al (2003); Robodoc	compared with the conventional THA group Robodoc femoral milling has shown decreased intraoperative embolic events compared
Schulz et al (2007); Robodoc	with standard femoral broach preparation. Concerns and limitations with aborted surgeries and increased operating time with
Nawabi et al (2012); Mako	clinical reports noting technical complications in almost 10% of cases. Mako-assisted THA had 4-6 times greater accuracy with version and inclination
Illgren (2013); Mako	vs manual THA. Significantly less dislocations at 6 months with robotic-assisted THA compared with
Fison et al (2013): Mako	manual THA performed with a posterior approach.
Domb et al (2014); Mako	100% (vs 80% manual) of Mako THAs placed within the Lewinnek safe zone for anteversion and isolitation and 00% (vs 62% manual) within the Cellspace of a sone
Jerabek et al (2014); Mako	Improved accuracy in achieving desired leg length and offset using Mako-assisted THA
Bukowksi et al (2014); Mako	Significantly higher modified Harris Hip scores and University of California, Los Angeles activity level with Mako-assisted
Suarez-Ahedo et al (2015); Mako	THA compared with manual THA. Robotic-assisted THA allowed for the use of smaller acetabular cups in relation to the patient 'femoral head size, indicating greater preservation of acetabular stock.

The Journal of Anthropiany 31 (2006) 2353-2340 Contents lists available at ScienceDirect	
ournal homepage: www.arthroplastyjournal.org	
y: A Comprehensive Review	
Allen, DO	
J. Jacofsky, M. Allen / The Journal of Arthroplasty 31 (2016) 2353–2363	2357
f Outcomes Summary	Ref.
operative knee alignment was restored to the planned ideal mechanical axis (00) in	[37]
of cases. Remaining cases were restored within 10 of ideal mechanical axis. ificantly less radiographic outliers postoperatively with robotic TKA. No significant	[38]
rence in patient-reported outcomes. lifferences in postoperative range of motion, Western Ontario and McMaster Universities	[39]
oarthritis Index (WOMAC) scores, and Hospital for Special Surgery (HSS) scores. Improved accuracy exion/extension gap balance with robotic assisted TKA.	
roved accuracy and efficiency of final bone resections in all planes vs conventional puter-assisted navigation techniques.	[56]
ificant reduction in postoperative mechanical alignment variability and tourniquet	[57]
e resections within 30 of neutral in 98% of cases. ificantly more accurate and repeatable bone resections than conventional	[59] [58]
rumentation.	
surgical mechanical axis alignment within 10 of the plan in 91% of cases. Improved rd Knee Scores from preoperative to 6 weeks postoperative.	[52]
d learning curve of an average of 8 (5-11) procedures with the average time over first 4 cases (tracker placement to trial acceptance) of 64.9 (27-102) min.	[53]
owed learning curve of the Navio system from an initial case duration of 85-48 min 5 surgeries.	[54]
ial UKA achieved accurate implementation of the surgical plan with small errors in iant placement.	[51]
xtic arm—assisted UKA demonstrated increased accuracy in recreating the posterior 1 slope and coronal tibial alignment.	[65]
xtic UKA demonstrated short learning curve and excellent radiographic outcomes times improvement in tibial alignment, lower SD).	[66]
ning curve of robotic-assisted UKA procedures averaged 13 cases. The learning cases not present an increased risk to the patient.	[67]
al component alignment was found to be more accurate and less variable for Mako stic arm-assisted surgeries compared to those with manual instrumentation.	[68]
planned and intraoperative tibiofemoral angle was within 1 degree. The postoperative leg axis radiographs were within 1.6 degrees.	[63]
 was more precise using a semiactive robotic system with femoral and tibial component tion compared to the manual technique. 	[69]
xtic arm—assisted UKA resulted in significantly lower postoperative pain and greater tionality as measured by American Knee Scores compared with manual UKA.	[29]
o UKA had a cumulative revision rate of 1.2% and high patient satisfaction at an age of 29.6 months follow-up.	[72]
-year follow-up, 92% of patients indicated that they were either very satisfied or fied with their robotic arm-assisted UKA procedure.	[74]
ents who received patellofemoral arthroplasty in combination with medial or lateral	[70]
demonstrated 83% good to excellent results. stic-assisted bicompartmental arthroplasty shows good survivorship and functional	[71]
omes at 2-year follow-up with 1/48 procedures requiring revision to TKA.	1001
stic THA showed statistically improved ht, hil, and alignment when using ROBODOC erform cementless primary THA when compared with manual THA	[30]
pared with the conventional THA group	[00]
store remotal mining has shown decreased intraoperative emotion events compared i standard femoral broach preparation.	[00]
cents and immanuous with aborted surgeries and increased operating time with cal reports noting technical complications in almost 10% of cases.	[42]
u-assisted travitation and the units greater accuracy with version and inclination sanual THA.	[13]
mcanny iess disocations at 6 months with robotic-assisted THA compared with ual THA performed with a posterior approach.	[13]
or cup procement aner impaction was recorded to be within 50 of the surgical plan. § (vs 80% manual) of Mako THAs placed within the Lewinnek safe zone for anteversion indication and 00% (or 00% moreub) within the Collegen and the pro-	[78] [77]
Incumation and 94.6 (vs 02.6 manual) within the Calianan safe 20nc. roved accuracy in achieving desired leg length and offset using Mako-assisted THA	[80]
parece with manual real. ificantly higher modified Harris Hip scores and University of California, Los Angeles activity level when activity	[83]
compared with manual THA.	[01]
auc-assisted in readout to the use of smaller acetabular cups in relation to the ent' femoral head size, indicating greater preservation of acetabular stock.	[01]

2357

Ref. [37] [38] [39]

[56]

[59] [58]

[53] [54]

[51] [65]

[66]

[67] [68] [63] [69] [29] [72] [74] [70] [71] [30] [35] [36] [42] [79] [13] [78] [77] [80]

[83] [81]

Robotic Assistance i A Proof of Principle Usin

FREDERICK A. MATSEN III, M.D., JOSEP BRIAN PRATT, M.S., DONALD BAUMO

This is actually a slide from a talk I used to give about CAS

Landmark registration

- Accuracy, inter-observer reliability
- Time
 - Reported: 10-30 minutes per case
- No short term advantages
- Pin loosening/fracture
 - Real risk exists
- Learning curve
 - At least 10 cases?
- Cost
 - CE at high volume centers?

Stulberg et al, JBJS 2002 Robinson et al, CORR 2006 Nizard et al, CORR 2004 Haaker et al, CORR 2005 Stulberg et al, JBJS 2002

Summary..

V

- Learn from History....
- Dislocation has driven us to some extent...
- No MOM 3.0 please...
- Nobody has the trunnion issues figured out
- We need to keep an eye on modularity...
- Robotics needs to be confirmed as value added (is it really just CAS 2.0?)
- We need to be smart about surgical approach!

-

-

Duke Orthopaedic Surgery

Moving forward. Climbing higher.

There are a lot of ways to get in the hip...

• Posterior

- Direct lateral/ Hardinge
- Watson-Jones/ Rottinger
- Smith-Peterson/ Direct
 Anterior
- SuperCap/SuperPath

Wright Medical Technology

Jointreconstruction.com

for Hip <u>NEW</u> Replacement Surgery

Yorkhospital.com

The Two Incision Total Hip....

Technique

- Anterior incision- medial border of the TFL muscle, at the level of the greater trochanter (use fluoro)
- Anterior capsule removed and proximal part of femur removed in 3 segments
- Acetabulum is prepared
- Posterior incision similar to femoral nailing exposure is made
- Blind dissection made down to the femur for reaming and broaching
- Femoral implant delivered via the posterior incision

221 Copyright © 2006 by The Journal of Bone and Joint Surgery, Incorporated

Early Complications of Primary Total Hip Replacement Performed with a Two-Incision Minimally Invasive Technique

Surgical Technique

BY B. SONNY BAL, MD, MBA, DOUG HALTOM, MD, THOMAS ALETO, MD, AND MATTHEW BARRETT, MD Investigation performed at the Department of Orthopaedic Surgery. School of Medicine, University of Missouri, Columbia, Missouri The original scientific article in which the surgical technique was presented was published in JBJS Vol. 87-A, pp. 2432-2438, November 2005

Subcutaneous tissues deep to the posterior incision are spread <u>blindly</u> with long, curved scissors to develop a soft-tissue

Early in our experience with the two-incision technique, we used a femoral implant that required diaphyseal reaming of the femur. Later, a switch was made

As the femoral stem is impacted into the femur, the taper can get caught in the hip capsule. If this happens, the capsule is released as necessary.

unpredictable implant positioning despite the use of intraoperative fluoroscopy⁴. Early follow-up data on a consecutive series of patients managed with twoincision minimally invasive primary total hip arthroplasty demonstrated that 10% of the patients had undergone repeat surgery because of a femoral fracture, implant subsidence, dislocation, or a wound complication⁴. The results of minimally invasive primary total hip arthroplasty performed with use of this technique were also complicated by a high prevalence of lateral thigh numbness and a risk of injury to the femoral nerve.

711

Copyright © 2005 by The Journal of Bone and Joint Surgery, Incorporated

Catastrophic Complications of Minimally Invasive Hip Surgery

A SERIES OF THREE CASES

BY THOMAS K. FEHRING, MD, AND J. BOHANNON MASON, MD

Investigation performed at the Charlotte Hip and Knee Center, Charlotte, North Carolina

CLINICAL ORTHOPAEDICS AND RELATED RESEARCH Number 441, pp. 63–67 © 2005 Lippincott Williams & Wilkins

THE FRANK STINCHFIELD AWARD

Muscle Damage after Total Hip Arthroplasty Done with the Two-incision and Mini-posterior Techniques

Rodrigo Mardones, MD*; Mark W. Pagnano, MD†; Joseph P. Nemanich, MD†; and Robert T. Trousdale, MD†

1000

Copyright © 2008 by The Journal of Bone and Joint Surgery, Incorporated

Slower Recovery After Two-Incision Than Mini-Posterior-Incision Total Hip Arthroplasty

A Randomized Clinical Trial

By Mark W. Pagnano, MD, Robert T. Trousdale, MD, R. Michael Meneghini, MD, and Arlen D. Hanssen, MD

Investigation performed at Mayo Clinic, Rochester, Minnesota

CLINICAL ORTHOPAEDICS AND RELATED RESEARCH Number 441, pp. 86–90 © 2005 Lippincott Williams & Wilkins

Two-incision THA Had Modest Outcomes and Some Substantial Complications

Mark W. Pagnano, MD; James Leone, MD; David G. Lewallen, MD; and Arlen D. Hanssen, MD CLINICAL ORTHOPAEDICS AND RELATED RESEARCH Number 453, pp. 156–159 © 2006 Lippincott Williams & Wilkins

Patients Preferred a Mini-posterior THA to a Contralateral Two-incision THA

Mark W. Pagnano, MD; Robert T. Trousdale, MD; R. Michael Meneghini, MD; and Arlen D. Hanssen, MD

Are we seeing this again?....

Anterior Approach for THA?

COPYRIGHT © 2003 BY THE JOURNAL OF BONE AND JOINT SUBGREY, INCORPORATED

Total Hip Arthroplasty Through a Minimally Invasive Anterior Surgical Approach

BY ROBERT E. KENNON, MD, JOHN M. KEGGI, MD, ROBERT S. WETMORE, MD, LAURINE E. ZATORSKI, RN, MICHAEL H. HUO, MD, AND KRISTAPS I. KEGGI, MD

Matta Anterior

ABMS Anterior

Gait Recovery

uman Performance Resear

The Journal of Arthroplasty Vol. 26 No. 6 Suppl. 1 2011

The Effect of Total Hip Arthroplasty Surgical Approach on Postoperative Gait Mechanics

Robin M. Queen, PhD,*† Robert J. Butler, PT, PhD,†‡ Tyler S. Watters, MD,* Scott S. Kelley, MD,* David E. Attarian, MD,* and Michael P. Bolognesi, MD*

No difference at 6 weeks...

Does Surgical Approach During Total Hip Arthroplasty Alter Gait Recovery During the First Year Following Surgery?

Robin M. Queen PhD ^{a,b}, Jordan F. Schaeffer MD ^a, Robert J. Butler DPT, PhD ^{b,c}, Carl C. Berasi BS ^d, Scott S. Kelley MD ^a, David E. Attarian MD ^a, Michael P. Bolognesi MD ^a

^a Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina
^b Michael W. Krzyzewski Human Performance Lah, Duke University Medical Center, Durham, North Carolina

Division of Physical Therapy, Department Community and Family Medicine, Duke University Medical Center, Durham, North Carolina

^d Duke University School of Medicine, Duke University Medical Center, Durham, North Carolina

One year results.... Similar story G. Meermans, S. Konan, R. Das, A. Volpin, F. S. Haddad

HIP The direct anterior approach in total hip arthroplasty

A SYSTEMATIC REVIEW OF THE LITERATURE

Table V. Blood loss

	Effect size	Cohen d
Barrett et al ¹⁴	0.52	1.21
Bergin et al ²³	0.142	0.288
Nakata et al ²⁷	0.724	2.1
Spaans et al ³⁴	0.463	1.044
Pogliacomi et al ³⁷	-0.105	-0.211
Pogliacomi et al ³⁸	-0.461	-1.03